My goal is to do grey scale image segmentation using pixelwise classification. So I have two labels 0 and 1. I made a network in pytorch which looks like the following.
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.up = nn.Upsample(scale_factor=2, mode='nearest')
self.conv11 = nn.Conv2d(1, 128, kernel_size=3, padding=1)
self.conv12 = nn.Conv2d(128, 256, kernel_size=3, padding=1)
self.conv13 = nn.Conv2d(256, 2, kernel_size=3, padding=1)
def forward(self, x):
in_size = x.size(0)
x = F.relu(self.conv11(x))
x = F.relu(self.conv12(x))
x = F.relu(self.conv13(x))
x = F.softmax(x, 2)
return x
In the last layer I designed the conv13 in such that it produces 2 channels one for each class.
Since I was using the softmax I was expecting that summation of value of same index on 2 separate channel would equal to 1.
For example assume the output image is ( 2{channel}, 4, 4). So I was expecting that
image[ channel 1 ][0][0] + image[ channel 2 ][0][0] = 1
But the output I get is 0.0015 which is not even close to 1. How can i use the softmax to predict channelwise ?
To check this I used the following code
for batch, data in enumerate(trainloader, 0):
inputs , labels = data
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = rmse(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
predicted = outputs.data
predicted = predicted.to('cpu')
predicted_img = predicted.numpy()
predicted_img = np.reshape(predicted_img,(2, 4, 4))
print(predicted_img[0])
print(predicted_img[1])
Those prints showed this
[[**0.2762002** 0.13305853 0.2510342 0.23114938]
[0.26812425 0.28500515 0.05682982 0.15851443]
[0.1640967 0.5409352 0.43547812 0.44782472]
[0.29157883 0.0410011 0.2566578 0.16251141]]
[[**0.23052207** 0.868455 0.43436486 0.0684725 ]
[0.18001427 0.02341573 0.0727293 0.2525512 ]
[0.06587404 0.04974682 0.3773188 0.6559266 ]
[0.5235896 0.05838248 0.11558701 0.02304965]]
It is clear that the corresponding elements are not summing up to 1 like
0.2762002 (index 0, 0) + 0.23052207 (index 0, 0) != 1
How can I fix it ?