Google Colab to reproduce the error None_for_gradient.ipynb
I need a custom loss function where the value is calculated according to the model inputs, these inputs are not the default values (y_true, y_pred)
. The predict method works for the generated architecture, but when I try to use the train_on_batch
, the following error appears.
ValueError: An operation has
None
for gradient. Please make sure that all of your ops have a gradient defined (i.e. are differentiable). Common ops without gradient: K.argmax, K.round, K.eval.
My custom function of loss (below) was based on this example image_ocr.py#L475, in the Colab link has another example based on this solution Custom loss function y_true y_pred shape mismatch #4781, it also generates the same error:
from keras import backend as K
from keras import losses
import keras
from keras.models import TimeDistributed, Dense, Dropout, LSTM
def my_loss(args):
input_y, input_y_pred, y_pred = args
return keras.losses.binary_crossentropy(input_y, input_y_pred)
def generator2():
input_noise = keras.Input(name='input_noise', shape=(40, 38), dtype='float32')
input_y = keras.Input(name='input_y', shape=(1,), dtype='float32')
input_y_pred = keras.Input(name='input_y_pred', shape=(1,), dtype='float32')
lstm1 = LSTM(256, return_sequences=True)(input_noise)
drop = Dropout(0.2)(lstm1)
lstm2 = LSTM(256, return_sequences=True)(drop)
y_pred = TimeDistributed(Dense(38, activation='softmax'))(lstm2)
loss_out = keras.layers.Lambda(my_loss, output_shape=(1,), name='my_loss')([input_y, input_y_pred, y_pred])
model = keras.models.Model(inputs=[input_noise, input_y, input_y_pred], outputs=[y_pred, loss_out])
model.compile(loss={'my_loss': lambda y_true, y_pred: y_pred}, optimizer='adam')
return model
g2 = generator2()
noise = np.random.uniform(0,1,size=[10,40,38])
g2.train_on_batch([noise, np.ones(10), np.zeros(10)], noise)
I need help to verify which operation is generating this error, because as far as I know the keras.losses.binary_crossentropy
is differentiable.