Deep RNN Model was working like a month ago. Lest it as a differnt project took over. Now coming back and trying to run training I get an error. Getting an error:
Traceback (most recent call last):
File "/home/matiss/.local/share/JetBrains/Toolbox/apps/PyCharm-P/ch-0/201.7223.92/plugins/python/helpers/pydev/_pydevd_bundle/pydevd_exec2.py", line 3, in Exec
exec(exp, global_vars, local_vars)
File "", line 1, in
File "/home/matiss/Documents/python_work/PycharmProjects/NectCleave/functions.py", line 358, in weighted_model
File "/usr/local/lib/python3.8/dist-packages/keras/engine/training.py", line 1213, in fit
self._make_train_function()
File "/usr/local/lib/python3.8/dist-packages/keras/engine/training.py", line 314, in _make_train_function
training_updates = self.optimizer.get_updates(
File "/usr/local/lib/python3.8/dist-packages/keras/legacy/interfaces.py", line 91, in wrapper
return func(*args, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/keras/backend/tensorflow_backend.py", line 75, in symbolic_fn_wrapper
return func(*args, **kwargs)
File "/usr/local/lib/python3.8/dist-packages/keras/optimizers.py", line 504, in get_updates
grads = self.get_gradients(loss, params)
File "/usr/local/lib/python3.8/dist-packages/keras/optimizers.py", line 93, in get_gradients
raise ValueError('An operation has None
for gradient. '
ValueError: An operation has None
for gradient. Please make sure that all of your ops have a gradient defined (i.e. are differentiable). Common ops without gradient: K.argmax, K.round, K.eval.
My model arhitecture:
def make_model(metrics='', output_bias=None, timesteps=None, features=None):
from keras import regularizers
if output_bias is not None:
output_bias = Constant(output_bias)
K.clear_session()
model = Sequential()
# First LSTM layer
model.add(
Bidirectional(LSTM(units=50, return_sequences=True, recurrent_dropout=0.1), input_shape=(timesteps, features)))
model.add(Dropout(0.5))
# Second LSTM layer
model.add(Bidirectional(LSTM(units=50, return_sequences=True)))
model.add(Dropout(0.5))
# Third LSTM layer
model.add(Bidirectional(LSTM(units=50, return_sequences=True)))
model.add(Dropout(0.5))
# Forth LSTM layer
model.add(Bidirectional(LSTM(units=50, return_sequences=False)))
model.add(Dropout(0.5))
# First Dense Layer
model.add(Dense(units=128, kernel_initializer='he_normal', activation='relu'))
model.add(Dropout(0.5))
# Adding the output layer
if output_bias == None:
model.add(Dense(units=1, activation='sigmoid', kernel_regularizer=regularizers.l2(0.001)))
else:
model.add(Dense(units=1, activation='sigmoid',
bias_initializer=output_bias, kernel_regularizer=regularizers.l2(0.001)))
# https://keras.io/api/losses/
model.compile(optimizer=Adam(lr=1e-3), loss=BinaryCrossentropy(), metrics=metrics)
return model
Please helpo. Why is this happening?