I have this doubt when I fit a neural network in a regression problem. I preprocessed the predictors (features) of my train and test data using the methods of Imputers and Scale from sklearn.preprocessing,but I did not preprocessed the class or target of my train data or test data.
In the architecture of my neural network all the layers has relu as activation function except the last layer that has the sigmoid function. I have choosen the sigmoid function for the last layer because the values of the predictions are between 0 and 1.
tl;dr: In summary, my question is: should I deprocess the output of my neuralnet? If I don't use the sigmoid function, the values of my output are < 0 and > 1. In this case, how should I do it?
Thanks
kernel_initializer
andloss
also matter. – Vikash Singh