You can create two separate dense layers. It's the simpliest way of doing it.
Separate layers:
from keras.layers import *
from keras.models import Model
#model's input and the basic syntax for creating layers
inputTensor = Input(some_shape)
outputTensor = SomeLayer(blablabla)(inputTensor)
outputTensor = AnotherLayer(bblablabla)(outputTensor)
#keep creating other layers like the previous one
#when you reach the point you want to divide:
out1 = Dense(5,activation='relu')(outputTensor)
out2 = Dense(5,activation='sigmoid')(outputTensor)
#you may concatenate the results:
outputTensor = Concatenate()([out1,out2])
#keep creating more layers....
#create the model
model = Model(inputTensor,outputTensor)