I am trying to do a binary classification using Fully Connected Layer architecture in Keras which is called as Dense class in Keras.
Here is the design of Neural Network architecture I created:
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.optimizers import SGD
self.model = Sequential()
# Dense(64) is a fully-connected layer with 64 hidden units.
# in the first layer, you must specify the expected input data shape:
# here, 20-dimensional vectors.
self.model.add(Dense(32, activation='relu', input_dim=self.x_train_std.shape[1]))
#self.model.add(Dropout(0.5))
#self.model.add(Dense(64, activation='relu'))
#self.model.add(Dropout(0.5))
self.model.add(Dense(1, activation='sigmoid'))
So I have an input matrix of 17000,2000 which 17K samples with 2k features.
I have kept only one hidden layer with 32 units or neurons in that.
My output layer is a one neuron with sigmoid activation function.
Now when I try to check the weights of first hidden layer I am expecting it to be of size (2000,32) where each row is for each input and each column is for each unit in that layer.
Here is the config of the architecture setup by Keras:
dl_1.model.get_config()
Out[70]:
[{'class_name': 'Dense',
'config': {'activation': 'relu',
'activity_regularizer': None,
'batch_input_shape': (None, 2000),
'bias_constraint': None,
'bias_initializer': {'class_name': 'Zeros', 'config': {}},
'bias_regularizer': None,
'dtype': 'float32',
'kernel_constraint': None,
'kernel_initializer': {'class_name': 'VarianceScaling',
'config': {'distribution': 'uniform',
'mode': 'fan_avg',
'scale': 1.0,
'seed': None}},
'kernel_regularizer': None,
'name': 'dense_1',
'trainable': True,
'units': 32,
'use_bias': True}},
{'class_name': 'Dense',
'config': {'activation': 'sigmoid',
'activity_regularizer': None,
'bias_constraint': None,
'bias_initializer': {'class_name': 'Zeros', 'config': {}},
'bias_regularizer': None,
'kernel_constraint': None,
'kernel_initializer': {'class_name': 'VarianceScaling',
'config': {'distribution': 'uniform',
'mode': 'fan_avg',
'scale': 1.0,
'seed': None}},
'kernel_regularizer': None,
'name': 'dense_2',
'trainable': True,
'units': 1,
'use_bias': True}}]
To see the dimension of first hidden layer:
dl_1.model.get_layer(name="dense_1").input_shape
(None, 2000)
Output size:
dl_1.model.get_layer(name="dense_1").output_shape
Out[99]:
(None, 32)
So it does seem to give the (2000,32) which is as expected.
However when I try to check the weight matrix for this layer
dl_1.model.get_layer(name="dense_1").get_weights()[0]
It gives me a list of numpy arrays with list length being 2000 and array length inside that 32 like below:
array([[ 0.0484077 , -0.02401097, -0.03099879, -0.02864455, -0.01511723,
0.01386002, 0.01127522, 0.00844895, -0.02420873, 0.04466306,
0.02965425, 0.0410631 , 0.02397312, 0.0038885 , 0.04846045,
0.00653989, -0.05288456, -0.00325713, 0.0445733 , 0.04594839,
0.02839083, 0.0445912 , -0.0140048 , -0.01198476, 0.05259909,
-0.03752745, -0.01337494, -0.02162734, -0.01522341, 0.01208428,
0.01122886, 0.01496441],
[ 0.05225918, 0.04231448, 0.01388102, -0.03310467, -0.05293509,
0.01130457, 0.03127011, -0.04250741, -0.04212657, -0.01595866,
-0.002456 , 0.01112743, 0.0150629 , 0.03072598, -0.04061607,
-0.01131565, -0.02259113, 0.00907649, -0.04728404, -0.00909081,
0.03182121, -0.04608218, -0.04411709, -0.03561752, 0.04686243,
-0.04555761, 0.04087613, 0.04380137, 0.02079088, -0.02390963,
-0.0164928 , -0.01228274],
I am not sure I understand this. It should be 32 X2000 and not 2000 X 32. So I am expecting that since I have 32 units, and each unit has 2000 weights, the list would be 32 elements long and each element should be 2000 dimension numpy array. But it's reverse. I am not sure why is that?
The weights are associated with the hidden layer and not the input layer so if I think they showed it for input layer that doesn't make sense.
Any idea what is going on in this?