I decided to give it a go using a custom CombineFn
function to determine the minimum and maximum per each key. Then, join them with the input data using CoGroupByKey
and apply the desired mapping to normalize the values.
"""Normalize PCollection values."""
import logging
import argparse
import sys
import apache_beam as beam
from apache_beam.io import WriteToText
from apache_beam.options.pipeline_options import PipelineOptions
# custom CombineFn that outputs min and max value
class MinMaxFn(beam.CombineFn):
# initialize min and max values (I assumed int type)
def create_accumulator(self):
return (sys.maxint, 0)
# update if current value is a new min or max
def add_input(self, min_max, input):
(current_min, current_max) = min_max
return min(current_min, input), max(current_max, input)
def merge_accumulators(self, accumulators):
return accumulators
def extract_output(self, min_max):
return min_max
def run(argv=None):
"""Main entry point; defines and runs the pipeline."""
parser = argparse.ArgumentParser()
parser.add_argument('--output',
dest='output',
required=True,
help='Output file to write results to.')
known_args, pipeline_args = parser.parse_known_args(argv)
pipeline_options = PipelineOptions(pipeline_args)
p = beam.Pipeline(options=pipeline_options)
# create test data
pc = [('foo', 1), ('bar', 5), ('foo', 5), ('bar', 9), ('bar', 2)]
# first run through data to apply custom combineFn and determine min/max per key
minmax = pc | 'Determine Min Max' >> beam.CombinePerKey(MinMaxFn())
# group input data by key and append corresponding min and max
merged = (pc, minmax) | 'Join Pcollections' >> beam.CoGroupByKey()
# apply mapping to normalize values according to 'norm_value = (value - min) / (max - min)'
normalized = merged | 'Normalize values' >> beam.Map(lambda (a, (b, c)): (a, [float(val - c[0][0][0])/(c[0][0][1] -c[0][0][0]) for val in b]))
# write results to output file
normalized | 'Write results' >> WriteToText(known_args.output)
result = p.run()
result.wait_until_finish()
if __name__ == '__main__':
logging.getLogger().setLevel(logging.INFO)
run()
The snippet can be run with python SCRIPT_NAME.py --output OUTPUT_FILENAME
. My test data, grouped by key, is:
('foo', [1, 5])
('bar', [5, 9, 2])
The CombineFn will return per key min and max:
('foo', [(1, 5)])
('bar', [(2, 9)])
The output of the join/cogroup by key operation:
('foo', ([1, 5], [[(1, 5)]]))
('bar', ([5, 9, 2], [[(2, 9)]]))
And after normalizing:
('foo', [0.0, 1.0])
('bar', [0.42857142857142855, 1.0, 0.0])
This was just a simple test so Iām sure it can be optimized for the mentioned volume of data but it seems to work as a starting point. Take into account that further considerations might be needed (i.e. avoid dividing by zero if min = max)