Edit: this answer is foolish - use (int) sqrt(i)
After profiling with proper settings (-march=native -m64 -O3
) the above was a lot faster.
Alright, a bit old question, but the "fastest" answer has not been given yet. The fastest (I think) is the Binary Square Root algorithm, explained fully in this Embedded.com article.
It basicly comes down to this:
unsigned short isqrt(unsigned long a) {
unsigned long rem = 0;
int root = 0;
int i;
for (i = 0; i < 16; i++) {
root <<= 1;
rem <<= 2;
rem += a >> 30;
a <<= 2;
if (root < rem) {
root++;
rem -= root;
root++;
}
}
return (unsigned short) (root >> 1);
}
On my machine (Q6600, Ubuntu 10.10) I profiled by taking the square root of the numbers 1-100000000. Using iqsrt(i)
took 2750 ms. Using (unsigned short) sqrt((float) i)
took 3600ms. This was done using g++ -O3
. Using the -ffast-math
compile option the times were 2100ms and 3100ms respectively. Note this is without using even a single line of assembler so it could probably still be much faster.
The above code works for both C and C++ and with minor syntax changes also for Java.
What works even better for a limited range is a binary search. On my machine this blows the version above out of the water by a factor 4. Sadly it's very limited in range:
#include <stdint.h>
const uint16_t squares[] = {
0, 1, 4, 9,
16, 25, 36, 49,
64, 81, 100, 121,
144, 169, 196, 225,
256, 289, 324, 361,
400, 441, 484, 529,
576, 625, 676, 729,
784, 841, 900, 961,
1024, 1089, 1156, 1225,
1296, 1369, 1444, 1521,
1600, 1681, 1764, 1849,
1936, 2025, 2116, 2209,
2304, 2401, 2500, 2601,
2704, 2809, 2916, 3025,
3136, 3249, 3364, 3481,
3600, 3721, 3844, 3969,
4096, 4225, 4356, 4489,
4624, 4761, 4900, 5041,
5184, 5329, 5476, 5625,
5776, 5929, 6084, 6241,
6400, 6561, 6724, 6889,
7056, 7225, 7396, 7569,
7744, 7921, 8100, 8281,
8464, 8649, 8836, 9025,
9216, 9409, 9604, 9801,
10000, 10201, 10404, 10609,
10816, 11025, 11236, 11449,
11664, 11881, 12100, 12321,
12544, 12769, 12996, 13225,
13456, 13689, 13924, 14161,
14400, 14641, 14884, 15129,
15376, 15625, 15876, 16129,
16384, 16641, 16900, 17161,
17424, 17689, 17956, 18225,
18496, 18769, 19044, 19321,
19600, 19881, 20164, 20449,
20736, 21025, 21316, 21609,
21904, 22201, 22500, 22801,
23104, 23409, 23716, 24025,
24336, 24649, 24964, 25281,
25600, 25921, 26244, 26569,
26896, 27225, 27556, 27889,
28224, 28561, 28900, 29241,
29584, 29929, 30276, 30625,
30976, 31329, 31684, 32041,
32400, 32761, 33124, 33489,
33856, 34225, 34596, 34969,
35344, 35721, 36100, 36481,
36864, 37249, 37636, 38025,
38416, 38809, 39204, 39601,
40000, 40401, 40804, 41209,
41616, 42025, 42436, 42849,
43264, 43681, 44100, 44521,
44944, 45369, 45796, 46225,
46656, 47089, 47524, 47961,
48400, 48841, 49284, 49729,
50176, 50625, 51076, 51529,
51984, 52441, 52900, 53361,
53824, 54289, 54756, 55225,
55696, 56169, 56644, 57121,
57600, 58081, 58564, 59049,
59536, 60025, 60516, 61009,
61504, 62001, 62500, 63001,
63504, 64009, 64516, 65025
};
inline int isqrt(uint16_t x) {
const uint16_t *p = squares;
if (p[128] <= x) p += 128;
if (p[ 64] <= x) p += 64;
if (p[ 32] <= x) p += 32;
if (p[ 16] <= x) p += 16;
if (p[ 8] <= x) p += 8;
if (p[ 4] <= x) p += 4;
if (p[ 2] <= x) p += 2;
if (p[ 1] <= x) p += 1;
return p - squares;
}
A 32 bit version can be downloaded here: https://gist.github.com/3481770
sqrt()
in the C library is unlikely to be implemented directly as a hardwaresqrt
instruction on all machines, since the hardware might not handle all the corner cases required by IEEE 754. If you don't care, you might use inline asm or gcc's-ffast-math
to get directly at the hardware. – R.. GitHub STOP HELPING ICE