I have managed to do it with Python "rasterio" and "geopandas"
It now creates a table like:
example result
since i did not found something similar like the extract comand in R "raster" it took more than only 2 lines but instead of calculating half the night it now takes only 2 min for one year.
The results are the same. It is based on the ideas of "gene" from "https://gis.stackexchange.com/questions/260304/extract-raster-values-within-shapefile-with-pygeoprocessing-or-gdal/260380"
import rasterio
from rasterio.mask import mask
import geopandas as gpd
import pandas as pd
print('1. Read shapefile')
shape_fn = "D:/path/path/multypoly.shp"
raster_fn = "D:/path/path/class_1992.tif"
# set max and min class
raster_min = 10
raster_max = 230
output_dir = 'C:/Temp/'
write_zero_frequencies = True
show_plot = False
shapefile = gpd.read_file(shape_fn)
# extract the geometries in GeoJSON format
geoms = shapefile.geometry.values # list of shapely geometries
records = shapefile.values
with rasterio.open(raster_fn) as src:
print('nodata value:', src.nodata)
idx_area = 0
# for upslope_area in geoms:
for index, row in shapefile.iterrows():
upslope_area = row['geometry']
lake_id = row['ABC_ID']
print('\n', idx_area, lake_id, '\n')
# transform to GeJSON format
from shapely.geometry import mapping
mapped_geom = [mapping(upslope_area)]
print('2. Cropping raster values')
# extract the raster values values within the polygon
out_image, out_transform = mask(src, mapped_geom, crop=True)
# no data values of the original raster
no_data=src.nodata
# extract the values of the masked array
data = out_image.data[0]
# extract the row, columns of the valid values
import numpy as np
# row, col = np.where(data != no_data)
clas = np.extract(data != no_data, data)
# from rasterio import Affine # or from affine import Affine
# T1 = out_transform * Affine.translation(0.5, 0.5) # reference the pixel centre
# rc2xy = lambda r, c: (c, r) * T1
# d = gpd.GeoDataFrame({'col':col,'row':row,'clas':clas})
range_min = raster_min # min(clas)
range_max = raster_max # max(clas)
classes = range(range_min, range_max + 2)
frequencies, class_limits = np.histogram(clas,
bins=classes,
range=[range_min, range_max])
if idx_area == 0:
# data_frame = gpd.GeoDataFrame({'freq_' + str(lake_id):frequencies})
data_frame = pd.DataFrame({'freq_' + str(lake_id): frequencies})
data_frame.index = class_limits[:-1]
else:
data_frame['freq_' + str(lake_id)] = frequencies
idx_area += 1
print(data_frame)
data_frame.to_csv(output_dir + 'upslope_area_1992.csv', sep='\t')