2
votes

I have a dataframe that looks like shown below. Index is years (1964 to 2016, non-unique, each year repeats 31 times), 1st column is days (1 to 31) and columns 2 to 13 are months (1 to 12)

Question is: how do I convert this to a Pandas series (or single column df) with pd.DatetimeIndex dates? I've tried using groupby, melt, pivot and transpose, but I am not able to figure out the correct syntax and the documentation is not clear. Thanks a lot for your help!

Dataframe

1

1 Answers

4
votes

We want to take advantage of the pd.to_datetime functionality that takes a dataframe with the relevantly named columns. In this case 'year', 'month', and 'day'.

So the solution below will aim to create such a dataframe with those three columns and pass it to pd.to_datetime.

  • We have 'year' in the index already... so let's get everything in the index. Let's start with getting 'day' in the index with df.set_index('day', append=True)
  • Next, we are going to get 'month' into the index. But right now it's in the columns. First, we rename the columns with .rename_axis('month', 1)
  • Then we put it in the index with .stack()
  • So now I have 3 columns of index values. When I reset_index, I'm going to have 3 columns pushed onto the front of the dataframe. So, I'll reset_index and take the first three columns with .reset_index().iloc[:, :3] and pass that to pd.to_datetime
  • Since some combinations may not exist, like '1964-02-31', we pass the errors='coerce' which will return NaT for such dates.
  • Finally, we filter the result using loc and dropping null values from the index.

Sample data

df = pd.DataFrame({
    'day': [1, 2, 3], 1: [8, 5, 3]
}, pd.Index([1999, 1999, 1999], name='year'))

df

      day  1
year        
1999    1  8
1999    2  5
1999    3  3

Solution

s = df.set_index('day', append=True).rename_axis('month', 1).stack()
s.index = pd.to_datetime(s.reset_index().iloc[:, :3], errors='coerce')
s = s.loc[s.index.dropna()]

s

1999-01-01    8
1999-01-02    5
1999-01-03    3
dtype: int64

Full data

df = pd.DataFrame(
    np.arange(31 * 12).reshape(31, 12),
    pd.Index([1964 for _ in range(31)], name='year'),
    np.arange(12) + 1
).assign(day=np.arange(31) + 1).iloc[:, [-1] + np.arange(12).tolist()]

df

      day    1    2    3    4    5    6    7    8    9   10   11   12
year                                                                 
1964    1    0    1    2    3    4    5    6    7    8    9   10   11
1964    2   12   13   14   15   16   17   18   19   20   21   22   23
1964    3   24   25   26   27   28   29   30   31   32   33   34   35
1964    4   36   37   38   39   40   41   42   43   44   45   46   47
1964    5   48   49   50   51   52   53   54   55   56   57   58   59
1964    6   60   61   62   63   64   65   66   67   68   69   70   71
1964    7   72   73   74   75   76   77   78   79   80   81   82   83
1964    8   84   85   86   87   88   89   90   91   92   93   94   95
1964    9   96   97   98   99  100  101  102  103  104  105  106  107
1964   10  108  109  110  111  112  113  114  115  116  117  118  119
1964   11  120  121  122  123  124  125  126  127  128  129  130  131
1964   12  132  133  134  135  136  137  138  139  140  141  142  143
1964   13  144  145  146  147  148  149  150  151  152  153  154  155
1964   14  156  157  158  159  160  161  162  163  164  165  166  167
1964   15  168  169  170  171  172  173  174  175  176  177  178  179
1964   16  180  181  182  183  184  185  186  187  188  189  190  191
1964   17  192  193  194  195  196  197  198  199  200  201  202  203
1964   18  204  205  206  207  208  209  210  211  212  213  214  215
1964   19  216  217  218  219  220  221  222  223  224  225  226  227
1964   20  228  229  230  231  232  233  234  235  236  237  238  239
1964   21  240  241  242  243  244  245  246  247  248  249  250  251
1964   22  252  253  254  255  256  257  258  259  260  261  262  263
1964   23  264  265  266  267  268  269  270  271  272  273  274  275
1964   24  276  277  278  279  280  281  282  283  284  285  286  287
1964   25  288  289  290  291  292  293  294  295  296  297  298  299
1964   26  300  301  302  303  304  305  306  307  308  309  310  311
1964   27  312  313  314  315  316  317  318  319  320  321  322  323
1964   28  324  325  326  327  328  329  330  331  332  333  334  335
1964   29  336  337  338  339  340  341  342  343  344  345  346  347
1964   30  348  349  350  351  352  353  354  355  356  357  358  359
1964   31  360  361  362  363  364  365  366  367  368  369  370  371

s = df.set_index('day', append=True).rename_axis('month', 1).stack()
s.index = pd.to_datetime(s.reset_index().iloc[:, :3], errors='coerce')
s = s.loc[s.index.dropna()]

s

1964-01-01      0
1964-02-01      1
1964-03-01      2
1964-04-01      3
1964-05-01      4
1964-06-01      5
1964-07-01      6
1964-08-01      7
1964-09-01      8
1964-10-01      9
1964-11-01     10
1964-12-01     11
1964-01-02     12
1964-02-02     13
1964-03-02     14
...
1964-05-30    352
1964-06-30    353
1964-07-30    354
1964-08-30    355
1964-09-30    356
1964-10-30    357
1964-11-30    358
1964-12-30    359
1964-01-31    360
1964-03-31    362
1964-05-31    364
1964-07-31    366
1964-08-31    367
1964-10-31    369
1964-12-31    371
Length: 366, dtype: int64

Alternative

lol = [[y, m, d] for y, d in zip(df.index, df.day) for m in df.columns[1:]]
columns = ['year', 'month', 'day']
d1 = pd.DataFrame(lol, columns=columns)
dates = pd.to_datetime(d1, errors='coerce')
m = dates.notnull().values

pd.Series(df.drop('day', 1).values.ravel()[m], dates[m])