I have a 20 x 4000 dataframe in Python using pandas. Two of these columns are named Year
and quarter
. I'd like to create a variable called period
that makes Year = 2000
and quarter= q2
into 2000q2
.
Can anyone help with that?
if both columns are strings, you can concatenate them directly:
df["period"] = df["Year"] + df["quarter"]
If one (or both) of the columns are not string typed, you should convert it (them) first,
df["period"] = df["Year"].astype(str) + df["quarter"]
If you need to join multiple string columns, you can use agg
:
df['period'] = df[['Year', 'quarter', ...]].agg('-'.join, axis=1)
Where "-" is the separator.
[''.join(i) for i in zip(df["Year"].map(str),df["quarter"])]
or slightly slower but more compact:
df.Year.str.cat(df.quarter)
df['Year'].astype(str) + df['quarter']
UPDATE: Timing graph Pandas 0.23.4
Let's test it on 200K rows DF:
In [250]: df
Out[250]:
Year quarter
0 2014 q1
1 2015 q2
In [251]: df = pd.concat([df] * 10**5)
In [252]: df.shape
Out[252]: (200000, 2)
UPDATE: new timings using Pandas 0.19.0
Timing without CPU/GPU optimization (sorted from fastest to slowest):
In [107]: %timeit df['Year'].astype(str) + df['quarter']
10 loops, best of 3: 131 ms per loop
In [106]: %timeit df['Year'].map(str) + df['quarter']
10 loops, best of 3: 161 ms per loop
In [108]: %timeit df.Year.str.cat(df.quarter)
10 loops, best of 3: 189 ms per loop
In [109]: %timeit df.loc[:, ['Year','quarter']].astype(str).sum(axis=1)
1 loop, best of 3: 567 ms per loop
In [110]: %timeit df[['Year','quarter']].astype(str).sum(axis=1)
1 loop, best of 3: 584 ms per loop
In [111]: %timeit df[['Year','quarter']].apply(lambda x : '{}{}'.format(x[0],x[1]), axis=1)
1 loop, best of 3: 24.7 s per loop
Timing using CPU/GPU optimization:
In [113]: %timeit df['Year'].astype(str) + df['quarter']
10 loops, best of 3: 53.3 ms per loop
In [114]: %timeit df['Year'].map(str) + df['quarter']
10 loops, best of 3: 65.5 ms per loop
In [115]: %timeit df.Year.str.cat(df.quarter)
10 loops, best of 3: 79.9 ms per loop
In [116]: %timeit df.loc[:, ['Year','quarter']].astype(str).sum(axis=1)
1 loop, best of 3: 230 ms per loop
In [117]: %timeit df[['Year','quarter']].astype(str).sum(axis=1)
1 loop, best of 3: 230 ms per loop
In [118]: %timeit df[['Year','quarter']].apply(lambda x : '{}{}'.format(x[0],x[1]), axis=1)
1 loop, best of 3: 9.38 s per loop
Answer contribution by @anton-vbr
df = pd.DataFrame({'Year': ['2014', '2015'], 'quarter': ['q1', 'q2']})
df['period'] = df[['Year', 'quarter']].apply(lambda x: ''.join(x), axis=1)
Yields this dataframe
Year quarter period
0 2014 q1 2014q1
1 2015 q2 2015q2
This method generalizes to an arbitrary number of string columns by replacing df[['Year', 'quarter']]
with any column slice of your dataframe, e.g. df.iloc[:,0:2].apply(lambda x: ''.join(x), axis=1)
.
You can check more information about apply() method here
The method cat()
of the .str
accessor works really well for this:
>>> import pandas as pd
>>> df = pd.DataFrame([["2014", "q1"],
... ["2015", "q3"]],
... columns=('Year', 'Quarter'))
>>> print(df)
Year Quarter
0 2014 q1
1 2015 q3
>>> df['Period'] = df.Year.str.cat(df.Quarter)
>>> print(df)
Year Quarter Period
0 2014 q1 2014q1
1 2015 q3 2015q3
cat()
even allows you to add a separator so, for example, suppose you only have integers for year and period, you can do this:
>>> import pandas as pd
>>> df = pd.DataFrame([[2014, 1],
... [2015, 3]],
... columns=('Year', 'Quarter'))
>>> print(df)
Year Quarter
0 2014 1
1 2015 3
>>> df['Period'] = df.Year.astype(str).str.cat(df.Quarter.astype(str), sep='q')
>>> print(df)
Year Quarter Period
0 2014 1 2014q1
1 2015 3 2015q3
Joining multiple columns is just a matter of passing either a list of series or a dataframe containing all but the first column as a parameter to str.cat()
invoked on the first column (Series):
>>> df = pd.DataFrame(
... [['USA', 'Nevada', 'Las Vegas'],
... ['Brazil', 'Pernambuco', 'Recife']],
... columns=['Country', 'State', 'City'],
... )
>>> df['AllTogether'] = df['Country'].str.cat(df[['State', 'City']], sep=' - ')
>>> print(df)
Country State City AllTogether
0 USA Nevada Las Vegas USA - Nevada - Las Vegas
1 Brazil Pernambuco Recife Brazil - Pernambuco - Recife
Do note that if your pandas dataframe/series has null values, you need to include the parameter na_rep to replace the NaN values with a string, otherwise the combined column will default to NaN.
Use of a lamba function this time with string.format().
import pandas as pd
df = pd.DataFrame({'Year': ['2014', '2015'], 'Quarter': ['q1', 'q2']})
print df
df['YearQuarter'] = df[['Year','Quarter']].apply(lambda x : '{}{}'.format(x[0],x[1]), axis=1)
print df
Quarter Year
0 q1 2014
1 q2 2015
Quarter Year YearQuarter
0 q1 2014 2014q1
1 q2 2015 2015q2
This allows you to work with non-strings and reformat values as needed.
import pandas as pd
df = pd.DataFrame({'Year': ['2014', '2015'], 'Quarter': [1, 2]})
print df.dtypes
print df
df['YearQuarter'] = df[['Year','Quarter']].apply(lambda x : '{}q{}'.format(x[0],x[1]), axis=1)
print df
Quarter int64
Year object
dtype: object
Quarter Year
0 1 2014
1 2 2015
Quarter Year YearQuarter
0 1 2014 2014q1
1 2 2015 2015q2
Although the @silvado answer is good if you change df.map(str)
to df.astype(str)
it will be faster:
import pandas as pd
df = pd.DataFrame({'Year': ['2014', '2015'], 'quarter': ['q1', 'q2']})
In [131]: %timeit df["Year"].map(str)
10000 loops, best of 3: 132 us per loop
In [132]: %timeit df["Year"].astype(str)
10000 loops, best of 3: 82.2 us per loop
Let us suppose your dataframe
is df
with columns Year
and Quarter
.
import pandas as pd
df = pd.DataFrame({'Quarter':'q1 q2 q3 q4'.split(), 'Year':'2000'})
Suppose we want to see the dataframe;
df
>>> Quarter Year
0 q1 2000
1 q2 2000
2 q3 2000
3 q4 2000
Finally, concatenate the Year
and the Quarter
as follows.
df['Period'] = df['Year'] + ' ' + df['Quarter']
You can now print
df
to see the resulting dataframe.
df
>>> Quarter Year Period
0 q1 2000 2000 q1
1 q2 2000 2000 q2
2 q3 2000 2000 q3
3 q4 2000 2000 q4
If you do not want the space between the year and quarter, simply remove it by doing;
df['Period'] = df['Year'] + df['Quarter']
Here is an implementation that I find very versatile:
In [1]: import pandas as pd
In [2]: df = pd.DataFrame([[0, 'the', 'quick', 'brown'],
...: [1, 'fox', 'jumps', 'over'],
...: [2, 'the', 'lazy', 'dog']],
...: columns=['c0', 'c1', 'c2', 'c3'])
In [3]: def str_join(df, sep, *cols):
...: from functools import reduce
...: return reduce(lambda x, y: x.astype(str).str.cat(y.astype(str), sep=sep),
...: [df[col] for col in cols])
...:
In [4]: df['cat'] = str_join(df, '-', 'c0', 'c1', 'c2', 'c3')
In [5]: df
Out[5]:
c0 c1 c2 c3 cat
0 0 the quick brown 0-the-quick-brown
1 1 fox jumps over 1-fox-jumps-over
2 2 the lazy dog 2-the-lazy-dog
more efficient is
def concat_df_str1(df):
""" run time: 1.3416s """
return pd.Series([''.join(row.astype(str)) for row in df.values], index=df.index)
and here is a time test:
import numpy as np
import pandas as pd
from time import time
def concat_df_str1(df):
""" run time: 1.3416s """
return pd.Series([''.join(row.astype(str)) for row in df.values], index=df.index)
def concat_df_str2(df):
""" run time: 5.2758s """
return df.astype(str).sum(axis=1)
def concat_df_str3(df):
""" run time: 5.0076s """
df = df.astype(str)
return df[0] + df[1] + df[2] + df[3] + df[4] + \
df[5] + df[6] + df[7] + df[8] + df[9]
def concat_df_str4(df):
""" run time: 7.8624s """
return df.astype(str).apply(lambda x: ''.join(x), axis=1)
def main():
df = pd.DataFrame(np.zeros(1000000).reshape(100000, 10))
df = df.astype(int)
time1 = time()
df_en = concat_df_str4(df)
print('run time: %.4fs' % (time() - time1))
print(df_en.head(10))
if __name__ == '__main__':
main()
final, when sum
(concat_df_str2) is used, the result is not simply concat, it will trans to integer.
Using zip
could be even quicker:
df["period"] = [''.join(i) for i in zip(df["Year"].map(str),df["quarter"])]
Graph:
import pandas as pd
import numpy as np
import timeit
import matplotlib.pyplot as plt
from collections import defaultdict
df = pd.DataFrame({'Year': ['2014', '2015'], 'quarter': ['q1', 'q2']})
myfuncs = {
"df['Year'].astype(str) + df['quarter']":
lambda: df['Year'].astype(str) + df['quarter'],
"df['Year'].map(str) + df['quarter']":
lambda: df['Year'].map(str) + df['quarter'],
"df.Year.str.cat(df.quarter)":
lambda: df.Year.str.cat(df.quarter),
"df.loc[:, ['Year','quarter']].astype(str).sum(axis=1)":
lambda: df.loc[:, ['Year','quarter']].astype(str).sum(axis=1),
"df[['Year','quarter']].astype(str).sum(axis=1)":
lambda: df[['Year','quarter']].astype(str).sum(axis=1),
"df[['Year','quarter']].apply(lambda x : '{}{}'.format(x[0],x[1]), axis=1)":
lambda: df[['Year','quarter']].apply(lambda x : '{}{}'.format(x[0],x[1]), axis=1),
"[''.join(i) for i in zip(dataframe['Year'].map(str),dataframe['quarter'])]":
lambda: [''.join(i) for i in zip(df["Year"].map(str),df["quarter"])]
}
d = defaultdict(dict)
step = 10
cont = True
while cont:
lendf = len(df); print(lendf)
for k,v in myfuncs.items():
iters = 1
t = 0
while t < 0.2:
ts = timeit.repeat(v, number=iters, repeat=3)
t = min(ts)
iters *= 10
d[k][lendf] = t/iters
if t > 2: cont = False
df = pd.concat([df]*step)
pd.DataFrame(d).plot().legend(loc='upper center', bbox_to_anchor=(0.5, -0.15))
plt.yscale('log'); plt.xscale('log'); plt.ylabel('seconds'); plt.xlabel('df rows')
plt.show()
This solution uses an intermediate step compressing two columns of the DataFrame to a single column containing a list of the values. This works not only for strings but for all kind of column-dtypes
import pandas as pd
df = pd.DataFrame({'Year': ['2014', '2015'], 'quarter': ['q1', 'q2']})
df['list']=df[['Year','quarter']].values.tolist()
df['period']=df['list'].apply(''.join)
print(df)
Result:
Year quarter list period
0 2014 q1 [2014, q1] 2014q1
1 2015 q2 [2015, q2] 2015q2
Here is my summary of the above solutions to concatenate / combine two columns with int and str value into a new column, using a separator between the values of columns. Three solutions work for this purpose.
# be cautious about the separator, some symbols may cause "SyntaxError: EOL while scanning string literal".
# e.g. ";;" as separator would raise the SyntaxError
separator = "&&"
# pd.Series.str.cat() method does not work to concatenate / combine two columns with int value and str value. This would raise "AttributeError: Can only use .cat accessor with a 'category' dtype"
df["period"] = df["Year"].map(str) + separator + df["quarter"]
df["period"] = df[['Year','quarter']].apply(lambda x : '{} && {}'.format(x[0],x[1]), axis=1)
df["period"] = df.apply(lambda x: f'{x["Year"]} && {x["quarter"]}', axis=1)
As many have mentioned previously, you must convert each column to string and then use the plus operator to combine two string columns. You can get a large performance improvement by using NumPy.
%timeit df['Year'].values.astype(str) + df.quarter
71.1 ms ± 3.76 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
%timeit df['Year'].astype(str) + df['quarter']
565 ms ± 22.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
def madd(x):
"""Performs element-wise string concatenation with multiple input arrays.
Args:
x: iterable of np.array.
Returns: np.array.
"""
for i, arr in enumerate(x):
if type(arr.item(0)) is not str:
x[i] = x[i].astype(str)
return reduce(np.core.defchararray.add, x)
For example:
data = list(zip([2000]*4, ['q1', 'q2', 'q3', 'q4']))
df = pd.DataFrame(data=data, columns=['Year', 'quarter'])
df['period'] = madd([df[col].values for col in ['Year', 'quarter']])
df
Year quarter period
0 2000 q1 2000q1
1 2000 q2 2000q2
2 2000 q3 2000q3
3 2000 q4 2000q4