I'm using Gurobi in Python. I'm iterating over a set of nodes and at each iteration, I'm adding a constraint to solve. After solving, it produces the Gurobi log as follows:
Optimize a model with 6 rows, 36 columns and 41 nonzeros
Variable types: 0 continuous, 36 integer (36 binary)
Coefficient statistics:
Matrix range [1e+00, 1e+00]
Objective range [2e+01, 9e+01]
Bounds range [1e+00, 1e+00]
RHS range [2e+00, 2e+00]
MIP start did not produce a new incumbent solution
MIP start violates constraint R5 by 2.000000000
Found heuristic solution: objective 347.281
Presolve removed 2 rows and 21 columns
Presolve time: 0.00s
Presolved: 4 rows, 15 columns, 27 nonzeros
Found heuristic solution: objective 336.2791955
Variable types: 0 continuous, 15 integer (15 binary)
Root relaxation: objective 3.043757e+02, 6 iterations, 0.00 seconds
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
* 0 0 0 304.3757488 304.37575 0.00% - 0s
Explored 0 nodes (6 simplex iterations) in 0.02 seconds
Thread count was 4 (of 4 available processors)
Solution count 3: 304.376 336.279 339.43
Optimal solution found (tolerance 1.00e-04)
Best objective 3.043757488224e+02, best bound 3.043757488224e+02, gap 0.0000%
But after a certain iteration, my answer is not what I'm expecting. So I wish to print all my model details (objective function, constraints etc) in the Gurobi log at every iteration.How can I do that?
But model.write() prints the objective function and the constraint that we have coded.
Minimize
0 x(0,0) + 75.47184905645283 x(0,1) + 57.55866572463264 x(0,2)
+ 33.97057550292606 x(0,3) + 23.3238075793812 x(0,4)
+ 40.80441152620633 x(0,5) + 75.47184905645283 x(1,0) + 0 x(1,1)
+ 32.7566787083184 x(1,2) + 90.60905032059435 x(1,3)
+ 55.71355310873648 x(1,4) + 40.60788100849391 x(1,5)
+ 57.55866572463264 x(2,0) + 32.7566787083184 x(2,1) + 0 x(2,2)
+ 83.36066218546971 x(2,3) + 46.57252408878007 x(2,4)
+ 41.4004830889689 x(2,5) + 33.97057550292606 x(3,0)
+ 90.60905032059435 x(3,1) + 83.36066218546971 x(3,2) + 0 x(3,3)
+ 37.12142238654117 x(3,4) + 50.00999900019995 x(3,5)
+ 23.3238075793812 x(4,0) + 55.71355310873648 x(4,1)
+ 46.57252408878007 x(4,2) + 37.12142238654117 x(4,3) + 0 x(4,4)
+ 17.69180601295413 x(4,5) + 40.80441152620633 x(5,0)
+ 40.60788100849391 x(5,1) + 41.4004830889689 x(5,2)
+ 50.00999900019995 x(5,3) + 17.69180601295413 x(5,4) + 0 x(5,5)
Subject To
R0: x(0,1) + x(0,2) + x(0,3) + x(0,4) + x(0,5) >= 2
R1: x(1,0) + x(1,2) + x(1,3) + x(1,4) + x(1,5) >= 2
R2: x(1,0) + x(1,3) + x(1,4) + x(2,0) + x(2,3) + x(2,4) + x(5,0) +
x(5,3)+ x(5,4) >= 2
R3: x(3,0) + x(3,1) + x(3,2) + x(3,4) + x(3,5) >= 2
R4: x(0,1) + x(0,2) + x(0,5) + x(3,1) + x(3,2) + x(3,5) + x(4,1) +
x(4,2)+ x(4,5) >= 2
R5: x(0,1) + x(0,2) + x(3,1) + x(3,2) + x(4,1) + x(4,2) + x(5,1) +
x(5,2)>= 2
Bounds
Binaries
x(0,0) x(0,1) x(0,2) x(0,3) x(0,4) x(0,5) x(1,0) x(1,1) x(1,2) x(1,3)
x(1,4) x(1,5) x(2,0) x(2,1) x(2,2) x(2,3) x(2,4) x(2,5) x(3,0) x(3,1)
x(3,2) x(3,3) x(3,4) x(3,5) x(4,0) x(4,1) x(4,2) x(4,3) x(4,4) x(4,5)
x(5,0) x(5,1) x(5,2) x(5,3) x(5,4) x(5,5)
End
What I need in this is to know what is happening at each iteration. That's because one iteration gives me another false answer and so I want to check whether any redundant constraint is adding into the model when solving.
In other words, does "Gurobi callbacks" allow us to access all information that is available in the model? What will it produce?