44
votes

I am reading multiple JSON objects into one DataFrame. The problem is that some of the columns are lists. Also, the data is very big and because of that I cannot use the available solutions on the internet. They are very slow and memory-inefficient

Here is how my data looks like:

df = pd.DataFrame({'A': ['x1','x2','x3', 'x4'], 'B':[['v1','v2'],['v3','v4'],['v5','v6'],['v7','v8']], 'C':[['c1','c2'],['c3','c4'],['c5','c6'],['c7','c8']],'D':[['d1','d2'],['d3','d4'],['d5','d6'],['d7','d8']], 'E':[['e1','e2'],['e3','e4'],['e5','e6'],['e7','e8']]})
    A       B          C           D           E
0   x1  [v1, v2]    [c1, c2]    [d1, d2]    [e1, e2]
1   x2  [v3, v4]    [c3, c4]    [d3, d4]    [e3, e4]
2   x3  [v5, v6]    [c5, c6]    [d5, d6]    [e5, e6]
3   x4  [v7, v8]    [c7, c8]    [d7, d8]    [e7, e8]

And this is the shape of my data: (441079, 12)

My desired output is:

    A       B          C           D           E
0   x1      v1         c1         d1          e1
0   x1      v2         c2         d2          e2
1   x2      v3         c3         d3          e3
1   x2      v4         c4         d4          e4
.....

EDIT: After being marked as duplicate, I would like to stress on the fact that in this question I was looking for an efficient method of exploding multiple columns. Therefore the approved answer is able to explode an arbitrary number of columns on very large datasets efficiently. Something that the answers to the other question failed to do (and that was the reason I asked this question after testing those solutions).

5
Yes, if you have object dtype columns containing Python lists, then everything will be slow and memory inefficient. The problem is likely better solved by never creating such a data-frame in the first place. - juanpa.arrivillaga
@juanpa.arrivillaga Can I read the JSON files in a different way not to create this mess? pd.read_csv has the option of defining convertors but I cannot find anything similar for pd.read_json - Moh
You will likely have to write something which munges your deserialized json data into something more manageable. - juanpa.arrivillaga
@juanpa.arrivillaga to my surprise, the answer is super efficient! - Moh

5 Answers

68
votes

pandas >= 0.25

Assuming all columns have the same number of lists, you can call Series.explode on each column.

df.set_index(['A']).apply(pd.Series.explode).reset_index()

    A   B   C   D   E
0  x1  v1  c1  d1  e1
1  x1  v2  c2  d2  e2
2  x2  v3  c3  d3  e3
3  x2  v4  c4  d4  e4
4  x3  v5  c5  d5  e5
5  x3  v6  c6  d6  e6
6  x4  v7  c7  d7  e7
7  x4  v8  c8  d8  e8

The idea is to set as the index all columns that must NOT be exploded first, then reset the index after.


It's also faster.

%timeit df.set_index(['A']).apply(pd.Series.explode).reset_index()
%%timeit
(df.set_index('A')
   .apply(lambda x: x.apply(pd.Series).stack())
   .reset_index()
   .drop('level_1', 1))


2.22 ms ± 98.6 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
9.14 ms ± 329 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
24
votes
def explode(df, lst_cols, fill_value=''):
    # make sure `lst_cols` is a list
    if lst_cols and not isinstance(lst_cols, list):
        lst_cols = [lst_cols]
    # all columns except `lst_cols`
    idx_cols = df.columns.difference(lst_cols)

    # calculate lengths of lists
    lens = df[lst_cols[0]].str.len()

    if (lens > 0).all():
        # ALL lists in cells aren't empty
        return pd.DataFrame({
            col:np.repeat(df[col].values, df[lst_cols[0]].str.len())
            for col in idx_cols
        }).assign(**{col:np.concatenate(df[col].values) for col in lst_cols}) \
          .loc[:, df.columns]
    else:
        # at least one list in cells is empty
        return pd.DataFrame({
            col:np.repeat(df[col].values, df[lst_cols[0]].str.len())
            for col in idx_cols
        }).assign(**{col:np.concatenate(df[col].values) for col in lst_cols}) \
          .append(df.loc[lens==0, idx_cols]).fillna(fill_value) \
          .loc[:, df.columns]

Usage:

In [82]: explode(df, lst_cols=list('BCDE'))
Out[82]:
    A   B   C   D   E
0  x1  v1  c1  d1  e1
1  x1  v2  c2  d2  e2
2  x2  v3  c3  d3  e3
3  x2  v4  c4  d4  e4
4  x3  v5  c5  d5  e5
5  x3  v6  c6  d6  e6
6  x4  v7  c7  d7  e7
7  x4  v8  c8  d8  e8
22
votes

Use set_index on A and on remaining columns apply and stack the values. All of this condensed into a single liner.

In [1253]: (df.set_index('A')
              .apply(lambda x: x.apply(pd.Series).stack())
              .reset_index()
              .drop('level_1', 1))
Out[1253]:
    A   B   C   D   E
0  x1  v1  c1  d1  e1
1  x1  v2  c2  d2  e2
2  x2  v3  c3  d3  e3
3  x2  v4  c4  d4  e4
4  x3  v5  c5  d5  e5
5  x3  v6  c6  d6  e6
6  x4  v7  c7  d7  e7
7  x4  v8  c8  d8  e8
11
votes

Building on @cs95's answer, we can use an if clause in the lambda function, instead of setting all the other columns as the index. This has the following advantages:

  • Preserves column order
  • Lets you easily specify columns using the set you want to modify, x.name in [...], or not modify x.name not in [...].
df.apply(lambda x: x.explode() if x.name in ['B', 'C', 'D', 'E'] else x)

     A   B   C   D   E
0   x1  v1  c1  d1  e1
0   x1  v2  c2  d2  e2
1   x2  v3  c3  d3  e3
1   x2  v4  c4  d4  e4
2   x3  v5  c5  d5  e5
2   x3  v6  c6  d6  e6
3   x4  v7  c7  d7  e7
3   x4  v8  c8  d8  e8
0
votes

Here is my solution using 'apply' function. Main features/differences:

  1. offer options to specify selected multiple columns or all columns
  2. offer options to specify values to fill in the 'missing' position (through parameter fill_mode = 'external'; 'internal'; or 'trim', explanation would be long, see examples below and try yourself to change the option and check the result)

Notes: option 'trim' was developed for my need, out of scope for this question

def cell_size_equalize2(row, cols='', fill_mode='internal', fill_value=''):
    jcols = [j for j,v in enumerate(row.index) if v in cols]
    if len(jcols)<1:
        jcols = range(len(row.index))
    Ls = [lenx(x) for x in row.values]
    if not Ls[:-1]==Ls[1:]:
        vals = [v if isinstance(v,list) else [v] for v in row.values]
        if fill_mode=='external':
            vals = [[e] + [fill_value]*(max(Ls)-1) if (not j in jcols) and (isinstance(row.values[j],list))
                    else e + [fill_value]*(max(Ls)-lenx(e))
                    for j,e in enumerate(vals)]
        elif fill_mode == 'internal':
            vals = [[e]+[e]*(max(Ls)-1) if (not j in jcols) and (isinstance(row.values[j],list))
                    else e+[e[-1]]*(max(Ls)-lenx(e)) 
                    for j,e in enumerate(vals)]
        else:
            vals = [e[0:min(Ls)] for e in vals]
        row = pd.Series(vals,index=row.index.tolist())
    return row

Examples:

df=pd.DataFrame({
    'a':[[1],2,3],
    'b':[[4,5,7],[5,4],4],
    'c':[[4,5],5,[6]]
})
print(df)
df1 = df.apply(cell_size_equalize2, cols='', fill_mode='external', fill_value = "OK", axis=1).apply(pd.Series.explode)
print('\nfill_mode=\'external\', all columns, fill_value = \'OK\'\n', df1)
df2 = df.apply(cell_size_equalize2, cols=['a', 'b'], fill_mode='external', fill_value = "OK", axis=1).apply(pd.Series.explode)
print('\nfill_mode=\'external\', cols = [\'a\', \'b\'], fill_value = \'OK\'\n', df2)
df3 = df.apply(cell_size_equalize2, cols=['a', 'b'], fill_mode='internal', axis=1).apply(pd.Series.explode)
print('\nfill_mode=\'internal\', cols = [\'a\', \'b\']\n', df3)
df4 = df.apply(cell_size_equalize2, cols='', fill_mode='trim', axis=1).apply(pd.Series.explode)
print('\nfill_mode=\'trim\', all columns\n', df4)

Output:

     a          b       c
0  [1]  [4, 5, 7]  [4, 5]
1    2     [5, 4]       5
2    3          4     [6]

fill_mode='external', all columns, fill_value = 'OK'
     a  b   c
0   1  4   4
0  OK  5   5
0  OK  7  OK
1   2  5   5
1  OK  4  OK
2   3  4   6

fill_mode='external', cols = ['a', 'b'], fill_value = 'OK'
     a  b       c
0   1  4  [4, 5]
0  OK  5      OK
0  OK  7      OK
1   2  5       5
1  OK  4      OK
2   3  4       6

fill_mode='internal', cols = ['a', 'b']
    a  b       c
0  1  4  [4, 5]
0  1  5  [4, 5]
0  1  7  [4, 5]
1  2  5       5
1  2  4       5
2  3  4       6

fill_mode='trim', all columns
    a  b  c
0  1  4  4
1  2  5  5
2  3  4  6