Here are a couple of ways.
user> (update-in person [:name] assoc :first-name "Bob" :last-name "Doe")
{:name {:middle-name "Michael", :last-name "Doe", :first-name "Bob"}}
user> (update-in person [:name] merge {:first-name "Bob" :last-name "Doe"})
{:name {:middle-name "Michael", :last-name "Doe", :first-name "Bob"}}
user> (update-in person [:name] into {:first-name "Bob" :last-name "Doe"})
{:name {:middle-name "Michael", :last-name "Doe", :first-name "Bob"}}
user> (-> person
(assoc-in [:name :first-name] "Bob")
(assoc-in [:name :last-name] "Doe"))
{:name {:middle-name "Michael", :last-name "Doe", :first-name "Bob"}}
Edit
update-in
does recursive assoc
s on your map. In this case it's roughly equivalent to:
user> (assoc person :name
(assoc (:name person)
:first-name "Bob"
:last-name "Doe"))
The repetition of keys becomes more and more tedious as you go deeper into a series of nested maps. update-in
's recursion lets you avoid repeating keys (e.g. :name
) over and over; intermediary results are stored on the stack between recursive calls. Take a look at the source for update-in to see how it's done.
user> (def foo {:bar {:baz {:quux 123}}})
#'user/foo
user> (assoc foo :bar
(assoc (:bar foo) :baz
(assoc (:baz (:bar foo)) :quux
(inc (:quux (:baz (:bar foo)))))))
{:bar {:baz {:quux 124}}}
user> (update-in foo [:bar :baz :quux] inc)
{:bar {:baz {:quux 124}}}
assoc
is dynamic (as are update-in
, assoc-in
, and most other Clojure functions that operate on Clojure data structures). If assoc
onto a map, it returns a map. If you assoc
onto a vector, it returns a vector. Look at the source for assoc and take a look in in RT.java
in the Clojure source for details.