How do I train 1 model multiple times and combine them at the output layer?
For example:
model_one = Sequential() #model 1
model_one.add(Convolution2D(32, 3, 3, activation='relu', input_shape=(1,28,28)))
model_one.add(Flatten())
model_one.add(Dense(128, activation='relu'))
model_two = Sequential() #model 2
model_two.add(Dense(128, activation='relu', input_shape=(784)))
model_two.add(Dense(128, activation='relu'))
model_???.add(Dense(10, activation='softmax')) #combine them here
model.compile(loss='categorical_crossentropy', #continu together
optimizer='adam',
metrics=['accuracy'])
model.fit(X_train, Y_train, #continu together somehow, even though this would never work because X_train and Y_train have wrong formats
batch_size=32, nb_epoch=10, verbose=1)
I've heard I can do this through a graph model but I can't find any documentation on it.
EDIT: in reply to the suggestion below:
A1 = Conv2D(20,kernel_size=(5,5),activation='relu',input_shape=( 28, 28, 1))
---> B1 = MaxPooling2D(pool_size=(2,2))(A1)
throws this error:
AttributeError: 'Conv2D' object has no attribute 'get_shape'