185
votes

I have trained a binary classification model with CNN, and here is my code

model = Sequential()
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1],
                        border_mode='valid',
                        input_shape=input_shape))
model.add(Activation('relu'))
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1]))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=pool_size))
# (16, 16, 32)
model.add(Convolution2D(nb_filters*2, kernel_size[0], kernel_size[1]))
model.add(Activation('relu'))
model.add(Convolution2D(nb_filters*2, kernel_size[0], kernel_size[1]))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=pool_size))
# (8, 8, 64) = (2048)
model.add(Flatten())
model.add(Dense(1024))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(2))  # define a binary classification problem
model.add(Activation('softmax'))

model.compile(loss='categorical_crossentropy',
              optimizer='adadelta',
              metrics=['accuracy'])
model.fit(x_train, y_train,
          batch_size=batch_size,
          nb_epoch=nb_epoch,
          verbose=1,
          validation_data=(x_test, y_test))

And here, I wanna get the output of each layer just like TensorFlow, how can I do that?

12

12 Answers

214
votes

You can easily get the outputs of any layer by using: model.layers[index].output

For all layers use this:

from keras import backend as K

inp = model.input                                           # input placeholder
outputs = [layer.output for layer in model.layers]          # all layer outputs
functors = [K.function([inp, K.learning_phase()], [out]) for out in outputs]    # evaluation functions

# Testing
test = np.random.random(input_shape)[np.newaxis,...]
layer_outs = [func([test, 1.]) for func in functors]
print layer_outs

Note: To simulate Dropout use learning_phase as 1. in layer_outs otherwise use 0.

Edit: (based on comments)

K.function creates theano/tensorflow tensor functions which is later used to get the output from the symbolic graph given the input.

Now K.learning_phase() is required as an input as many Keras layers like Dropout/Batchnomalization depend on it to change behavior during training and test time.

So if you remove the dropout layer in your code you can simply use:

from keras import backend as K

inp = model.input                                           # input placeholder
outputs = [layer.output for layer in model.layers]          # all layer outputs
functors = [K.function([inp], [out]) for out in outputs]    # evaluation functions

# Testing
test = np.random.random(input_shape)[np.newaxis,...]
layer_outs = [func([test]) for func in functors]
print layer_outs

Edit 2: More optimized

I just realized that the previous answer is not that optimized as for each function evaluation the data will be transferred CPU->GPU memory and also the tensor calculations needs to be done for the lower layers over-n-over.

Instead this is a much better way as you don't need multiple functions but a single function giving you the list of all outputs:

from keras import backend as K

inp = model.input                                           # input placeholder
outputs = [layer.output for layer in model.layers]          # all layer outputs
functor = K.function([inp, K.learning_phase()], outputs )   # evaluation function

# Testing
test = np.random.random(input_shape)[np.newaxis,...]
layer_outs = functor([test, 1.])
print layer_outs
167
votes

From https://keras.io/getting-started/faq/#how-can-i-obtain-the-output-of-an-intermediate-layer

One simple way is to create a new Model that will output the layers that you are interested in:

from keras.models import Model

model = ...  # include here your original model

layer_name = 'my_layer'
intermediate_layer_model = Model(inputs=model.input,
                                 outputs=model.get_layer(layer_name).output)
intermediate_output = intermediate_layer_model.predict(data)

Alternatively, you can build a Keras function that will return the output of a certain layer given a certain input, for example:

from keras import backend as K

# with a Sequential model
get_3rd_layer_output = K.function([model.layers[0].input],
                                  [model.layers[3].output])
layer_output = get_3rd_layer_output([x])[0]
23
votes

Based on all the good answers of this thread, I wrote a library to fetch the output of each layer. It abstracts all the complexity and has been designed to be as user-friendly as possible:

https://github.com/philipperemy/keract

It handles almost all the edge cases.

Hope it helps!

10
votes

Following looks very simple to me:

model.layers[idx].output

Above is a tensor object, so you can modify it using operations that can be applied to a tensor object.

For example, to get the shape model.layers[idx].output.get_shape()

idx is the index of the layer and you can find it from model.summary()

8
votes

I wrote this function for myself (in Jupyter) and it was inspired by indraforyou's answer. It will plot all the layer outputs automatically. Your images must have a (x, y, 1) shape where 1 stands for 1 channel. You just call plot_layer_outputs(...) to plot.

%matplotlib inline
import matplotlib.pyplot as plt
from keras import backend as K

def get_layer_outputs():
    test_image = YOUR IMAGE GOES HERE!!!
    outputs    = [layer.output for layer in model.layers]          # all layer outputs
    comp_graph = [K.function([model.input]+ [K.learning_phase()], [output]) for output in outputs]  # evaluation functions

    # Testing
    layer_outputs_list = [op([test_image, 1.]) for op in comp_graph]
    layer_outputs = []

    for layer_output in layer_outputs_list:
        print(layer_output[0][0].shape, end='\n-------------------\n')
        layer_outputs.append(layer_output[0][0])

    return layer_outputs

def plot_layer_outputs(layer_number):    
    layer_outputs = get_layer_outputs()

    x_max = layer_outputs[layer_number].shape[0]
    y_max = layer_outputs[layer_number].shape[1]
    n     = layer_outputs[layer_number].shape[2]

    L = []
    for i in range(n):
        L.append(np.zeros((x_max, y_max)))

    for i in range(n):
        for x in range(x_max):
            for y in range(y_max):
                L[i][x][y] = layer_outputs[layer_number][x][y][i]


    for img in L:
        plt.figure()
        plt.imshow(img, interpolation='nearest')
7
votes

This answer is based on: https://stackoverflow.com/a/59557567/2585501

To print the output of a single layer:

from tensorflow.keras import backend as K
layerIndex = 1
func = K.function([model.get_layer(index=0).input], model.get_layer(index=layerIndex).output)
layerOutput = func([input_data])  # input_data is a numpy array
print(layerOutput)

To print output of every layer:

from tensorflow.keras import backend as K
for layerIndex, layer in enumerate(model.layers):
    func = K.function([model.get_layer(index=0).input], layer.output)
    layerOutput = func([input_data])  # input_data is a numpy array
    print(layerOutput)
6
votes

From: https://github.com/philipperemy/keras-visualize-activations/blob/master/read_activations.py

import keras.backend as K

def get_activations(model, model_inputs, print_shape_only=False, layer_name=None):
    print('----- activations -----')
    activations = []
    inp = model.input

    model_multi_inputs_cond = True
    if not isinstance(inp, list):
        # only one input! let's wrap it in a list.
        inp = [inp]
        model_multi_inputs_cond = False

    outputs = [layer.output for layer in model.layers if
               layer.name == layer_name or layer_name is None]  # all layer outputs

    funcs = [K.function(inp + [K.learning_phase()], [out]) for out in outputs]  # evaluation functions

    if model_multi_inputs_cond:
        list_inputs = []
        list_inputs.extend(model_inputs)
        list_inputs.append(0.)
    else:
        list_inputs = [model_inputs, 0.]

    # Learning phase. 0 = Test mode (no dropout or batch normalization)
    # layer_outputs = [func([model_inputs, 0.])[0] for func in funcs]
    layer_outputs = [func(list_inputs)[0] for func in funcs]
    for layer_activations in layer_outputs:
        activations.append(layer_activations)
        if print_shape_only:
            print(layer_activations.shape)
        else:
            print(layer_activations)
    return activations
5
votes

Wanted to add this as a comment (but don't have high enough rep.) to @indraforyou's answer to correct for the issue mentioned in @mathtick's comment. To avoid the InvalidArgumentError: input_X:Y is both fed and fetched. exception, simply replace the line outputs = [layer.output for layer in model.layers] with outputs = [layer.output for layer in model.layers][1:], i.e.

adapting indraforyou's minimal working example:

from keras import backend as K 
inp = model.input                                           # input placeholder
outputs = [layer.output for layer in model.layers][1:]        # all layer outputs except first (input) layer
functor = K.function([inp, K.learning_phase()], outputs )   # evaluation function

# Testing
test = np.random.random(input_shape)[np.newaxis,...]
layer_outs = functor([test, 1.])
print layer_outs

p.s. my attempts trying things such as outputs = [layer.output for layer in model.layers[1:]] did not work.

4
votes

Assuming you have:

1- Keras pre-trained model.

2- Input x as image or set of images. The resolution of image should be compatible with dimension of the input layer. For example 80*80*3 for 3-channels (RGB) image.

3- The name of the output layer to get the activation. For example, "flatten_2" layer. This should be include in the layer_names variable, represents name of layers of the given model.

4- batch_size is an optional argument.

Then you can easily use get_activation function to get the activation of the output layer for a given input x and pre-trained model:

import six
import numpy as np
import keras.backend as k
from numpy import float32
def get_activations(x, model, layer, batch_size=128):
"""
Return the output of the specified layer for input `x`. `layer` is specified by layer index (between 0 and
`nb_layers - 1`) or by name. The number of layers can be determined by counting the results returned by
calling `layer_names`.
:param x: Input for computing the activations.
:type x: `np.ndarray`. Example: x.shape = (80, 80, 3)
:param model: pre-trained Keras model. Including weights.
:type model: keras.engine.sequential.Sequential. Example: model.input_shape = (None, 80, 80, 3)
:param layer: Layer for computing the activations
:type layer: `int` or `str`. Example: layer = 'flatten_2'
:param batch_size: Size of batches.
:type batch_size: `int`
:return: The output of `layer`, where the first dimension is the batch size corresponding to `x`.
:rtype: `np.ndarray`. Example: activations.shape = (1, 2000)
"""

    layer_names = [layer.name for layer in model.layers]
    if isinstance(layer, six.string_types):
        if layer not in layer_names:
            raise ValueError('Layer name %s is not part of the graph.' % layer)
        layer_name = layer
    elif isinstance(layer, int):
        if layer < 0 or layer >= len(layer_names):
            raise ValueError('Layer index %d is outside of range (0 to %d included).'
                             % (layer, len(layer_names) - 1))
        layer_name = layer_names[layer]
    else:
        raise TypeError('Layer must be of type `str` or `int`.')

    layer_output = model.get_layer(layer_name).output
    layer_input = model.input
    output_func = k.function([layer_input], [layer_output])

    # Apply preprocessing
    if x.shape == k.int_shape(model.input)[1:]:
        x_preproc = np.expand_dims(x, 0)
    else:
        x_preproc = x
    assert len(x_preproc.shape) == 4

    # Determine shape of expected output and prepare array
    output_shape = output_func([x_preproc[0][None, ...]])[0].shape
    activations = np.zeros((x_preproc.shape[0],) + output_shape[1:], dtype=float32)

    # Get activations with batching
    for batch_index in range(int(np.ceil(x_preproc.shape[0] / float(batch_size)))):
        begin, end = batch_index * batch_size, min((batch_index + 1) * batch_size, x_preproc.shape[0])
        activations[begin:end] = output_func([x_preproc[begin:end]])[0]

    return activations
4
votes

Previous solutions were not working for me. I handled this issue as shown below.

layer_outputs = []
for i in range(1, len(model.layers)):
    tmp_model = Model(model.layers[0].input, model.layers[i].output)
    tmp_output = tmp_model.predict(img)[0]
    layer_outputs.append(tmp_output)
3
votes

In case you have one of the following cases:

  • error: InvalidArgumentError: input_X:Y is both fed and fetched
  • case of multiple inputs

You need to do the following changes:

  • add filter out for input layers in outputs variable
  • minnor change on functors loop

Minimum example:

from keras.engine.input_layer import InputLayer
inp = model.input
outputs = [layer.output for layer in model.layers if not isinstance(layer, InputLayer)]
functors = [K.function(inp + [K.learning_phase()], [x]) for x in outputs]
layer_outputs = [fun([x1, x2, xn, 1]) for fun in functors]
0
votes

Well, other answers are very complete, but there is a very basic way to "see", not to "get" the shapes.

Just do a model.summary(). It will print all layers and their output shapes. "None" values will indicate variable dimensions, and the first dimension will be the batch size.