How to convert an edge list (data) to a python scipy sparse matrix to get this result:
Dataset (where 'agn' is node category one and 'fct' is node category two):
data['agn'].tolist()
['p1', 'p1', 'p1', 'p1', 'p1', 'p2', 'p2', 'p2', 'p2', 'p3', 'p3', 'p3', 'p4', 'p4', 'p5']
data['fct'].tolist()
['f1', 'f2', 'f3', 'f4', 'f5', 'f3', 'f4', 'f5', 'f6', 'f5', 'f6', 'f7', 'f7', 'f8', 'f9']
(not working) python code:
from scipy.sparse import csr_matrix, coo_matrix
csr_matrix((data_sub['agn'].values, data['fct'].values),
shape=(len(set(data['agn'].values)), len(set(data_sub['fct'].values))))
-> Error: "TypeError: invalid input format" Do I really need three arrays to construct the matrix, like the examples in the scipy csr documentation do suggest (can only use two links, sorry!)?
(working) R code used to construct the matrix with only two vectors:
library(Matrix)
grph_tim <- sparseMatrix(i = as.numeric(data$agn),
j = as.numeric(data$fct),
dims = c(length(levels(data$agn)),
length(levels(data$fct))),
dimnames = list(levels(data$agn),
levels(data$fct)))
EDIT: It finally worked after I modified the code from here and added the needed array:
import numpy as np
import pandas as pd
import scipy.sparse as ss
def read_data_file_as_coo_matrix(filename='edges.txt'):
"Read data file and return sparse matrix in coordinate format."
# if the nodes are integers, use 'dtype = np.uint32'
data = pd.read_csv(filename, sep = '\t', encoding = 'utf-8')
# where 'rows' is node category one and 'cols' node category 2
rows = data['agn'] # Not a copy, just a reference.
cols = data['fct']
# crucial third array in python, which can be left out in r
ones = np.ones(len(rows), np.uint32)
matrix = ss.coo_matrix((ones, (rows, cols)))
return matrix
Additionally, I converted the string names of the nodes to integers. Thus data['agn']
becomes [0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4]
and data['fct']
becomes [0, 1, 2, 3, 4, 2, 3, 4, 5, 4, 5, 6, 6, 7, 8]
.
I get this sparse matrix:
(0, 0) 1 (0, 1) 1 (0, 2) 1 (0, 3) 1 (0, 4) 1 (1, 2) 1 (1, 3) 1 (1, 4) 1 (1, 5) 1 (2, 4) 1 (2, 5) 1 (2, 6) 1 (3, 6) 1 (3, 7) 1 (4, 8) 1
scipy
sparse needs thedata
as well as therows
andcols
arrays. It does not assume that thedata
values are all1
. The original sparse matrix code was used for linear algebra problems, where thedata
is floats. – hpaulj