Take the following code:
import MySQLdb as mdb
import pandas as pd
con = mdb.connect(db_host, db_user, db_pass, db_name)
query = """SELECT `TIME`.`BID-CLOSE`
FROM `EUR-USD`.`tbl_EUR-USD_1-Day`
WHERE TIME >= '2006-12-15 22:00:00' AND TIME <= '2007-01-03 22:00:00'
ORDER BY TIME ASC;"""
# Create a pandas dataframe from the SQL query
eurusd = pd.read_sql_query(query, con=con, index_col='TIME')
idx = pd.date_range('2006-12-17 22:00:00', '2007-01-03 22:00:00')
eurusd.reindex(idx, fill_value=None)
This gives an output of
BID-CLOSE
2006-12-17 22:00:00 1.30971
2006-12-18 22:00:00 1.31971
2006-12-19 22:00:00 1.31721
2006-12-20 22:00:00 1.31771
2006-12-21 22:00:00 1.31411
2006-12-22 22:00:00 NaN
2006-12-23 22:00:00 NaN
2006-12-24 22:00:00 NaN
2006-12-25 22:00:00 1.30971
2006-12-26 22:00:00 1.31131
2006-12-27 22:00:00 1.31491
2006-12-28 22:00:00 1.32021
2006-12-29 22:00:00 NaN
2006-12-30 22:00:00 NaN
2006-12-31 22:00:00 1.32731
2007-01-01 22:00:00 1.32731
2007-01-02 22:00:00 1.31701
2007-01-03 22:00:00 1.30831
Re-Index the data
eurusd = eurusd.reindex(idx, fill_value=None)
List of interpolate types
methods = ['linear', 'quadratic', 'cubic']
Next line throws an Exception...
pd.DataFrame({m: eurusd.interpolate(method=m) for m in methods})
ValueError: If using all scalar values, you must pass an index
Following the Interpolation section of this guide http://pandas.pydata.org/pandas-docs/stable/missing_data.html How do I correctly 'pass an index' in this situation?
Update 1
The output of eurusd.interpolate('linear')
BID-CLOSE
2006-12-17 22:00:00 1.309710
2006-12-18 22:00:00 1.319710
2006-12-19 22:00:00 1.317210
2006-12-20 22:00:00 1.317710
2006-12-21 22:00:00 1.314110
2006-12-22 22:00:00 1.313010
2006-12-23 22:00:00 1.311910
2006-12-24 22:00:00 1.310810
2006-12-25 22:00:00 1.309710
2006-12-26 22:00:00 1.311310
2006-12-27 22:00:00 1.314910
2006-12-28 22:00:00 1.320210
2006-12-29 22:00:00 1.322577
2006-12-30 22:00:00 1.324943
2006-12-31 22:00:00 1.327310
2007-01-01 22:00:00 1.327310
2007-01-02 22:00:00 1.317010
2007-01-03 22:00:00 1.308310
Update 2
In[9]: pd.DataFrame({m: eurusd['BID-CLOSE'].interpolate(method=m) for m in methods})
Out[9]:
cubic linear quadratic
2006-12-17 22:00:00 1.309710 1.309710 1.309710
2006-12-18 22:00:00 1.319710 1.319710 1.319710
2006-12-19 22:00:00 1.317210 1.317210 1.317210
2006-12-20 22:00:00 1.317710 1.317710 1.317710
2006-12-21 22:00:00 1.314110 1.314110 1.314110
2006-12-22 22:00:00 1.310762 1.313010 1.307947
2006-12-23 22:00:00 1.309191 1.311910 1.305159
2006-12-24 22:00:00 1.308980 1.310810 1.305747
2006-12-25 22:00:00 1.309710 1.309710 1.309710
2006-12-26 22:00:00 1.311310 1.311310 1.311310
2006-12-27 22:00:00 1.314910 1.314910 1.314910
2006-12-28 22:00:00 1.320210 1.320210 1.320210
2006-12-29 22:00:00 1.323674 1.322577 1.321632
2006-12-30 22:00:00 1.325553 1.324943 1.323998
2006-12-31 22:00:00 1.327310 1.327310 1.327310
2007-01-01 22:00:00 1.327310 1.327310 1.327310
2007-01-02 22:00:00 1.317010 1.317010 1.317010
2007-01-03 22:00:00 1.308310 1.308310 1.308310
EURUSD
the same thing aseurusd
??? – juanpa.arrivillagaEURUSD.interpolate('linear')
, for example...? – juanpa.arrivillaga