The following octave code shows a sample 3D matrix using Octave/Matlab
octave:1> A=zeros(3,3,3);
octave:2>
octave:2> A(:,:,1)= [[1 2 3];[4 5 6];[7 8 9]];
octave:3>
octave:3> A(:,:,2)= [[11 22 33];[44 55 66];[77 88 99]];
octave:4>
octave:4> A(:,:,3)= [[111 222 333];[444 555 666];[777 888 999]];
octave:5>
octave:5>
octave:5> A
A =
ans(:,:,1) =
1 2 3
4 5 6
7 8 9
ans(:,:,2) =
11 22 33
44 55 66
77 88 99
ans(:,:,3) =
111 222 333
444 555 666
777 888 999
octave:6> A(1,3,2)
ans = 33
And I need to convert the same matrix using numpy ... unfortunately When I'm trying to access the same index using array in numpy I get different values as shown below!!
import numpy as np
array = np.array([[[1 ,2 ,3],[4 ,5 ,6],[7 ,8 ,9]], [[11 ,22 ,33],[44 ,55 ,66],[77 ,88 ,99]], [[111 ,222 ,333],[444 ,555 ,666],[777 ,888 ,999]]])
>>> array[0,2,1]
8
Also I read the following document that shows the difference between matrix implementation in Matlab and in Python numpy Numpy for Matlab users but I didn't find a sample 3d array and the mapping of it into Matlab and vice versa!
the answer is different for example accessing the element(1,3,2) in Matlab doesn't match the same index using numpy (0,2,1)
Octave/Matlab
octave:6> A(1,3,2)
ans = 33
Python
>>> array[0,2,1]
8
A(x,y,z)
and numpy isA[z,y,x]
– Ander BiguriA[z,x,y]
, I think thex
andy
switch because of the row-major vs column-major difference – Danx,y
because row/column major. However, this last change, I'd add it to the definition of the matrix, not to the indexing, because that is how all python matrices are created – Ander BiguriA=[1 2; 3 4]
isA=np.array([[1, 3], [2, 4]])
in numpy – Ander Biguri