I'm attempting to implement gradient descent using code from :
Gradient Descent implementation in octave
I've amended code to following :
X = [1; 1; 1;]
y = [1; 0; 1;]
m = length(y);
X = [ones(m, 1), data(:,1)];
theta = zeros(2, 1);
iterations = 2000;
alpha = 0.001;
for iter = 1:iterations
theta = theta -((1/m) * ((X * theta) - y)' * X)' * alpha;
end
theta
Which gives following output :
X =
1
1
1
y =
1
0
1
theta =
0.32725
0.32725
theta is a 1x2 Matrix but should'nt it be 1x3 as the output (y) is 3x1 ?
So I should be able to multiply theta by the training example to make a prediction but cannot multiply x by theta as x is 1x3 and theta is 1x2?
Update :
%X = [1 1; 1 1; 1 1;]
%y = [1 1; 0 1; 1 1;]
X = [1 1 1; 1 1 1; 0 0 0;]
y = [1 1 1; 0 0 0; 1 1 1;]
m = length(y);
X = [ones(m, 1), X];
theta = zeros(4, 1);
theta
iterations = 2000;
alpha = 0.001;
for iter = 1:iterations
theta = theta -((1/m) * ((X * theta) - y)' * X)' * alpha;
end
%to make prediction
m = size(X, 1); % Number of training examples
p = zeros(m, 1);
htheta = sigmoid(X * theta);
p = htheta >= 0.5;