I have this data.frame:
df_test = structure(list(`MAE %` = c(-0.0647202646339709, -0.126867775585001,
-1.81159420289855, -1.03092783505155, -2.0375491194877, -0.160783192796913,
-0.585827216261999, -0.052988554472234, -0.703351261894911, -0.902996305924203,
-0.767676767676768, -0.0101091791346543, -0.0134480903711673,
-0.229357798165138, -0.176407935028625, -0.627062706270627, -1.75706139769261,
-1.23024009524439, -0.257391763463569, -0.878347259688137, -0.123613523987705,
-1.65711947626841, -2.11718534838887, -0.256285931980328, -1.87152777777778,
-0.0552333609500138, -0.943983402489627, -0.541095890410959,
-0.118607409474639, -0.840453845076341), Profit = c(7260, 2160,
-7080, 3600, -8700, 6300, -540, 10680, -1880, -3560, -720, 5400,
5280, 1800, 11040, -240, -2320, 2520, 10300, -2520, 8400, -9240,
-5190, 7350, -6790, 3600, -3240, 8640, 7150, -2400)), .Names = c("MAE %",
"Profit"), row.names = c(NA, 30L), class = "data.frame")
Now i want some summary statistics like:
df_test %>%
group_by(win.g = Profit > 0) %>%
summarise(GroupCnt = n(),
TopMAE = filter(`MAE %` > -1) %>% sum(Profit),
BottomMAE = filter(`MAE %` <= -1) %>% sum(Profit))
So we group data if Profit > 0 or <= 0. Then i want sum() of Profit for rows with MAE % <= -1 and for MAE % > -1. Grouping must be used for TopMAE, BottomMAE calculation.
Expected result is like:
# win.g CroupCnt TopMAE BottomMAE
#1 FALSE 14 -15100 -39320
#2 TRUE 16 95360 6120
But my R code does not working. I have an error:
Error: no applicable method for 'filter_' applied to an object of class "logical"
I have changed my code according to error:
df_test %>%
group_by(win.g = Profit > 0) %>%
summarise(UnderStop = n(),
TopMAE = filter(., `MAE %` > -1) %>% sum(Profit),
BottomMAE = filter(., `MAE %` <= -1) %>% sum(Profit))
But the result is none. I have an error again:
Error: incorrect length (14), expecting: 16
I tried to understand grouping behavior and how to use piping inside summarise after grouping, but i did not success. Spend whole day on it.
HOW can i get my expected result table? Please help me to understand dplyr logic when grouping and calculating some functions on that groups.