85
votes

I'm relatively new to the world of TensorFlow, and pretty perplexed by how you'd actually read CSV data into a usable example/label tensors in TensorFlow. The example from the TensorFlow tutorial on reading CSV data is pretty fragmented and only gets you part of the way to being able to train on CSV data.

Here's my code that I've pieced together, based off that CSV tutorial:

from __future__ import print_function
import tensorflow as tf

def file_len(fname):
    with open(fname) as f:
        for i, l in enumerate(f):
            pass
    return i + 1

filename = "csv_test_data.csv"

# setup text reader
file_length = file_len(filename)
filename_queue = tf.train.string_input_producer([filename])
reader = tf.TextLineReader(skip_header_lines=1)
_, csv_row = reader.read(filename_queue)

# setup CSV decoding
record_defaults = [[0],[0],[0],[0],[0]]
col1,col2,col3,col4,col5 = tf.decode_csv(csv_row, record_defaults=record_defaults)

# turn features back into a tensor
features = tf.stack([col1,col2,col3,col4])

print("loading, " + str(file_length) + " line(s)\n")
with tf.Session() as sess:
  tf.initialize_all_variables().run()

  # start populating filename queue
  coord = tf.train.Coordinator()
  threads = tf.train.start_queue_runners(coord=coord)

  for i in range(file_length):
    # retrieve a single instance
    example, label = sess.run([features, col5])
    print(example, label)

  coord.request_stop()
  coord.join(threads)
  print("\ndone loading")

And here is an brief example from the CSV file I'm loading - pretty basic data - 4 feature columns, and 1 label column:

0,0,0,0,0
0,15,0,0,0
0,30,0,0,0
0,45,0,0,0

All the code above does is print each example from the CSV file, one by one, which, while nice, is pretty darn useless for training.

What I'm struggling with here is how you'd actually turn those individual examples, loaded one-by-one, into a training dataset. For example, here's a notebook I was working on in the Udacity Deep Learning course. I basically want to take the CSV data I'm loading, and plop it into something like train_dataset and train_labels:

def reformat(dataset, labels):
  dataset = dataset.reshape((-1, image_size * image_size)).astype(np.float32)
  # Map 2 to [0.0, 1.0, 0.0 ...], 3 to [0.0, 0.0, 1.0 ...]
  labels = (np.arange(num_labels) == labels[:,None]).astype(np.float32)
  return dataset, labels
train_dataset, train_labels = reformat(train_dataset, train_labels)
valid_dataset, valid_labels = reformat(valid_dataset, valid_labels)
test_dataset, test_labels = reformat(test_dataset, test_labels)
print('Training set', train_dataset.shape, train_labels.shape)
print('Validation set', valid_dataset.shape, valid_labels.shape)
print('Test set', test_dataset.shape, test_labels.shape)

I've tried using tf.train.shuffle_batch, like this, but it just inexplicably hangs:

  for i in range(file_length):
    # retrieve a single instance
    example, label = sess.run([features, colRelevant])
    example_batch, label_batch = tf.train.shuffle_batch([example, label], batch_size=file_length, capacity=file_length, min_after_dequeue=10000)
    print(example, label)

So to sum up, here are my questions:

  • What am I missing about this process?
    • It feels like there is some key intuition that I'm missing about how to properly build an input pipeline.
  • Is there a way to avoid having to know the length of the CSV file?
    • It feels pretty inelegant to have to know the number of lines you want to process (the for i in range(file_length) line of code above)

Edit: As soon as Yaroslav pointed out that I was likely mixing up imperative and graph-construction parts here, it started to become clearer. I was able to pull together the following code, which I think is closer to what would typically done when training a model from CSV (excluding any model training code):

from __future__ import print_function
import numpy as np
import tensorflow as tf
import math as math
import argparse

parser = argparse.ArgumentParser()
parser.add_argument('dataset')
args = parser.parse_args()

def file_len(fname):
    with open(fname) as f:
        for i, l in enumerate(f):
            pass
    return i + 1

def read_from_csv(filename_queue):
  reader = tf.TextLineReader(skip_header_lines=1)
  _, csv_row = reader.read(filename_queue)
  record_defaults = [[0],[0],[0],[0],[0]]
  colHour,colQuarter,colAction,colUser,colLabel = tf.decode_csv(csv_row, record_defaults=record_defaults)
  features = tf.stack([colHour,colQuarter,colAction,colUser])  
  label = tf.stack([colLabel])  
  return features, label

def input_pipeline(batch_size, num_epochs=None):
  filename_queue = tf.train.string_input_producer([args.dataset], num_epochs=num_epochs, shuffle=True)  
  example, label = read_from_csv(filename_queue)
  min_after_dequeue = 10000
  capacity = min_after_dequeue + 3 * batch_size
  example_batch, label_batch = tf.train.shuffle_batch(
      [example, label], batch_size=batch_size, capacity=capacity,
      min_after_dequeue=min_after_dequeue)
  return example_batch, label_batch

file_length = file_len(args.dataset) - 1
examples, labels = input_pipeline(file_length, 1)

with tf.Session() as sess:
  tf.initialize_all_variables().run()

  # start populating filename queue
  coord = tf.train.Coordinator()
  threads = tf.train.start_queue_runners(coord=coord)

  try:
    while not coord.should_stop():
      example_batch, label_batch = sess.run([examples, labels])
      print(example_batch)
  except tf.errors.OutOfRangeError:
    print('Done training, epoch reached')
  finally:
    coord.request_stop()

  coord.join(threads) 
5
I've been trying out your code, but can't get it to work. Is there something I'm missing that you determined? Thanks. I've posted a thread here so you can get more details: stackoverflow.com/questions/40143019/…Link

5 Answers

25
votes

I think you are mixing up imperative and graph-construction parts here. The operation tf.train.shuffle_batch creates a new queue node, and a single node can be used to process the entire dataset. So I think you are hanging because you created a bunch of shuffle_batch queues in your for loop and didn't start queue runners for them.

Normal input pipeline usage looks like this:

  1. Add nodes like shuffle_batch to input pipeline
  2. (optional, to prevent unintentional graph modification) finalize graph

--- end of graph construction, beginning of imperative programming --

  1. tf.start_queue_runners
  2. while(True): session.run()

To be more scalable (to avoid Python GIL), you could generate all of your data using TensorFlow pipeline. However, if performance is not critical, you can hook up a numpy array to an input pipeline by using slice_input_producer. Here's an example with some Print nodes to see what's going on (messages in Print go to stdout when node is run)

tf.reset_default_graph()

num_examples = 5
num_features = 2
data = np.reshape(np.arange(num_examples*num_features), (num_examples, num_features))
print data

(data_node,) = tf.slice_input_producer([tf.constant(data)], num_epochs=1, shuffle=False)
data_node_debug = tf.Print(data_node, [data_node], "Dequeueing from data_node ")
data_batch = tf.batch([data_node_debug], batch_size=2)
data_batch_debug = tf.Print(data_batch, [data_batch], "Dequeueing from data_batch ")

sess = tf.InteractiveSession()
sess.run(tf.initialize_all_variables())
tf.get_default_graph().finalize()
tf.start_queue_runners()

try:
  while True:
    print sess.run(data_batch_debug)
except tf.errors.OutOfRangeError as e:
  print "No more inputs."

You should see something like this

[[0 1]
 [2 3]
 [4 5]
 [6 7]
 [8 9]]
[[0 1]
 [2 3]]
[[4 5]
 [6 7]]
No more inputs.

The "8, 9" numbers didn't fill up the full batch, so they didn't get produced. Also tf.Print are printed to sys.stdout, so they show up in separately in Terminal for me.

PS: a minimal of connecting batch to a manually initialized queue is in github issue 2193

Also, for debugging purposes you might want to set timeout on your session so that your IPython notebook doesn't hang on empty queue dequeues. I use this helper function for my sessions

def create_session():
  config = tf.ConfigProto(log_device_placement=True)
  config.gpu_options.per_process_gpu_memory_fraction=0.3 # don't hog all vRAM
  config.operation_timeout_in_ms=60000   # terminate on long hangs
  # create interactive session to register a default session
  sess = tf.InteractiveSession("", config=config)
  return sess

Scalability Notes:

  1. tf.constant inlines copy of your data into the Graph. There's a fundamental limit of 2GB on size of Graph definition so that's an upper limit on size of data
  2. You could get around that limit by using v=tf.Variable and saving the data into there by running v.assign_op with a tf.placeholder on right-hand side and feeding numpy array to the placeholder (feed_dict)
  3. That still creates two copies of data, so to save memory you could make your own version of slice_input_producer which operates on numpy arrays, and uploads rows one at a time using feed_dict
13
votes

Or you could try this, the code loads the Iris dataset into tensorflow using pandas and numpy and a simple one neuron output is printed in the session. Hope it helps for a basic understanding.... [ I havent added the way of one hot decoding labels].

import tensorflow as tf 
import numpy
import pandas as pd
df=pd.read_csv('/home/nagarjun/Desktop/Iris.csv',usecols = [0,1,2,3,4],skiprows = [0],header=None)
d = df.values
l = pd.read_csv('/home/nagarjun/Desktop/Iris.csv',usecols = [5] ,header=None)
labels = l.values
data = numpy.float32(d)
labels = numpy.array(l,'str')
#print data, labels

#tensorflow
x = tf.placeholder(tf.float32,shape=(150,5))
x = data
w = tf.random_normal([100,150],mean=0.0, stddev=1.0, dtype=tf.float32)
y = tf.nn.softmax(tf.matmul(w,x))

with tf.Session() as sess:
    print sess.run(y)
2
votes

You can use latest tf.data API :

dataset = tf.contrib.data.make_csv_dataset(filepath)
iterator = dataset.make_initializable_iterator()
columns = iterator.get_next()
with tf.Session() as sess:
   sess.run([iteator.initializer])
2
votes

If anyone came here searching for a simple way to read absolutely large and sharded CSV files in tf.estimator API then , please see below my code

CSV_COLUMNS = ['ID','text','class']
LABEL_COLUMN = 'class'
DEFAULTS = [['x'],['no'],[0]]  #Default values

def read_dataset(filename, mode, batch_size = 512):
    def _input_fn(v_test=False):
#         def decode_csv(value_column):
#             columns = tf.decode_csv(value_column, record_defaults = DEFAULTS)
#             features = dict(zip(CSV_COLUMNS, columns))
#             label = features.pop(LABEL_COLUMN)
#             return add_engineered(features), label

        # Create list of files that match pattern
        file_list = tf.gfile.Glob(filename)

        # Create dataset from file list
        #dataset = tf.data.TextLineDataset(file_list).map(decode_csv)
        dataset = tf.contrib.data.make_csv_dataset(file_list,
                                                   batch_size=batch_size,
                                                   column_names=CSV_COLUMNS,
                                                   column_defaults=DEFAULTS,
                                                   label_name=LABEL_COLUMN)

        if mode == tf.estimator.ModeKeys.TRAIN:
            num_epochs = None # indefinitely
            dataset = dataset.shuffle(buffer_size = 10 * batch_size)
        else:
            num_epochs = 1 # end-of-input after this

        batch_features, batch_labels = dataset.make_one_shot_iterator().get_next()

        #Begins - Uncomment for testing only -----------------------------------------------------<
        if v_test == True:
            with tf.Session() as sess:
                print(sess.run(batch_features))
        #End - Uncomment for testing only -----------------------------------------------------<
        return add_engineered(batch_features), batch_labels
    return _input_fn

Example usage in TF.estimator:

train_spec = tf.estimator.TrainSpec(input_fn = read_dataset(
                                                filename = train_file,
                                                mode = tf.estimator.ModeKeys.TRAIN,
                                                batch_size = 128), 
                                      max_steps = num_train_steps)
0
votes

2.0 Compatible Solution: This Answer might be provided by others in the above thread but I will provide additional links which will help the community.

dataset = tf.data.experimental.make_csv_dataset(
      file_path,
      batch_size=5, # Artificially small to make examples easier to show.
      label_name=LABEL_COLUMN,
      na_value="?",
      num_epochs=1,
      ignore_errors=True, 
      **kwargs)

For more information, please refer this Tensorflow Tutorial.