Here I can generate a signal:
import numpy as np
from matplotlib import pyplot as plt
from numpy.lib import stride_tricks
import seaborn as sns
sns.set(style = "darkgrid" )
fs = 48000.0
t = np.arange(0, 10, 1.0/fs) # 0 to 10 sec at 48k samples per second
f0 = 1000
phi = np.pi/2 # pi/2
x = 0 # initial x
f = [500, 100, 40, 1] #vector of frequencies
A = [1, 0.5, 0.25, 0.1] #vector of amplitudes
for i in range(0, len(f)):
x = x + A[i] * np.sin(2 * np.pi * f[i] * t + phi) #add waves
x = x + max(x) # shift plot upwards
plt.plot(t, x)
plt.axis([0, .05, 0, max(x)])
plt.xlabel('time')
plt.ylabel('amplitude')
plt.show()
Here I can plot the power spectrum of the entire signal:
time_step = 1/fs
ps = np.abs(np.fft.fft(x))**2
freqs = np.fft.fftfreq(x.size, time_step)
idx = np.argsort(freqs)
plt.plot(freqs[idx], 256*ps[idx]/max(ps[idx])) # set max to 256 for later image plotting purposes
plt.xlabel('frequency')
plt.ylabel('power')
plt.show()
Next I want to generate a spectrogram, represented as an image of frequency (y-axis) and time (x-axis), but I am new to fourier analysis and am confused about how to use a window function (rectangular, hamming, hanning, etc) during this stage. Is there a proper way to do this so that a window function of my choosing can be used to break up the signal in time?