I am given a G=(V,E) directed graph, and all of its edges have weight of either "0" or "1".
I'm given a vertex named "A" in the graph, and for each v in V, i need to find the weight of the path from A to v which has the lowest weight in time O(V+E). I have to use only BFS or DFS (although this is probably a BFS problem).
I though about making a new graph where vertices that have an edge of 0 between them are united and then run BFS on it, but that would ruin the graph direction (this would work if the graph was undirected or the weights were {2,1} and for an edge of 2 i would create a new vertex).
I would appreciate any help.
Thanks