Here is an excise:
Let G be a weighted directed graph with n vertices and m edges, where all edges have positive weight. A directed cycle is a directed path that starts and ends at the same vertex and contains at least one edge. Give an O(n^3) algorithm to find a directed cycle in G of minimum total weight. Partial credit will be given for an O((n^2)*m) algorithm.
Here is my algorithm.
I do a DFS
. Each time when I find a back edge
, I know I've got a directed cycle.
Then I will temporarily go backwards along the parent array
(until I travel through all vertices in the cycle) and calculate the total weights
.
Then I compare the total weight
of this cycle with min
. min
always takes the minimum total weights. After the DFS finishes, our minimum directed cycle is also found.
Ok, then about the time complexity.
To be honest, I don't know the time complexity of my algorithm.
For DFS, the traversal takes O(m+n) (if m is the number of edges, and n is the number of vertices). For each vertex, it might point back to one of its ancestors and thus forms a cycle. When a cycle is found, it takes O(n) to summarise the total weights.
So I think the total time is O(m+n*n). But obviously it is wrong, as stated in the excise the optimal time is O(n^3) and the normal time is O(m*n^2).
Can anyone help me with:
- Is my algorithm correct?
- What is the time complexity if my algorithm is correct?
- Is there any better algorithm for this problem?