203
votes

I have a pandas DataFrame with one column:

df = pd.DataFrame({"teams": [["SF", "NYG"] for _ in range(7)]})

       teams
0  [SF, NYG]
1  [SF, NYG]
2  [SF, NYG]
3  [SF, NYG]
4  [SF, NYG]
5  [SF, NYG]
6  [SF, NYG]

How can split this column of lists into 2 columns?

Desired result:

  team1 team2
0    SF   NYG
1    SF   NYG
2    SF   NYG
3    SF   NYG
4    SF   NYG
5    SF   NYG
6    SF   NYG
8

8 Answers

325
votes

You can use DataFrame constructor with lists created by to_list:

import pandas as pd

d1 = {'teams': [['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG'],
                ['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG']]}
df2 = pd.DataFrame(d1)
print (df2)
       teams
0  [SF, NYG]
1  [SF, NYG]
2  [SF, NYG]
3  [SF, NYG]
4  [SF, NYG]
5  [SF, NYG]
6  [SF, NYG]

df2[['team1','team2']] = pd.DataFrame(df2.teams.tolist(), index= df2.index)
print (df2)
       teams team1 team2
0  [SF, NYG]    SF   NYG
1  [SF, NYG]    SF   NYG
2  [SF, NYG]    SF   NYG
3  [SF, NYG]    SF   NYG
4  [SF, NYG]    SF   NYG
5  [SF, NYG]    SF   NYG
6  [SF, NYG]    SF   NYG

And for new DataFrame:

df3 = pd.DataFrame(df2['teams'].to_list(), columns=['team1','team2'])
print (df3)
  team1 team2
0    SF   NYG
1    SF   NYG
2    SF   NYG
3    SF   NYG
4    SF   NYG
5    SF   NYG
6    SF   NYG

Solution with apply(pd.Series) is very slow:

#7k rows
df2 = pd.concat([df2]*1000).reset_index(drop=True)

In [121]: %timeit df2['teams'].apply(pd.Series)
1.79 s ± 52.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [122]: %timeit pd.DataFrame(df2['teams'].to_list(), columns=['team1','team2'])
1.63 ms ± 54.3 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
76
votes

Much simpler solution:

pd.DataFrame(df2["teams"].to_list(), columns=['team1', 'team2'])

Yields,

  team1 team2
-------------
0    SF   NYG
1    SF   NYG
2    SF   NYG
3    SF   NYG
4    SF   NYG
5    SF   NYG
6    SF   NYG
7    SF   NYG

If you wanted to split a column of delimited strings rather than lists, you could similarly do:

pd.DataFrame(df["teams"].str.split('<delim>', expand=True).values,
             columns=['team1', 'team2'])
43
votes

This solution preserves the index of the df2 DataFrame, unlike any solution that uses tolist():

df3 = df2.teams.apply(pd.Series)
df3.columns = ['team1', 'team2']

Here's the result:

  team1 team2
0    SF   NYG
1    SF   NYG
2    SF   NYG
3    SF   NYG
4    SF   NYG
5    SF   NYG
6    SF   NYG
18
votes

There seems to be a syntactically simpler way, and therefore easier to remember, as opposed to the proposed solutions. I'm assuming that the column is called 'meta' in a dataframe df:

df2 = pd.DataFrame(df['meta'].str.split().values.tolist())
8
votes

list comprehension

simple implementation with list comprehension ( my favorite)

df = pd.DataFrame([pd.Series(x) for x in df.teams])
df.columns = ['team_{}'.format(x+1) for x in df.columns]

timing on output:

CPU times: user 0 ns, sys: 0 ns, total: 0 ns
Wall time: 2.71 ms

output:

team_1  team_2
0   SF  NYG
1   SF  NYG
2   SF  NYG
3   SF  NYG
4   SF  NYG
5   SF  NYG
6   SF  NYG
7
votes

The above solutions didn't work for me since I have nan observations in my dataframe. In my case df2[['team1','team2']] = pd.DataFrame(df2.teams.values.tolist(), index= df2.index) yields:

object of type 'float' has no len()

I solve this using list comprehension. Here the replicable example:

import pandas as pd
import numpy as np
d1 = {'teams': [['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG'],
            ['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG']]}
df2 = pd.DataFrame(d1)
df2.loc[2,'teams'] = np.nan
df2.loc[4,'teams'] = np.nan
df2

output:

        teams
0   [SF, NYG]
1   [SF, NYG]
2   NaN
3   [SF, NYG]
4   NaN
5   [SF, NYG]
6   [SF, NYG]

df2['team1']=np.nan
df2['team2']=np.nan

solving with list comprehension:

for i in [0,1]:
    df2['team{}'.format(str(i+1))]=[k[i] if isinstance(k,list) else k for k in df2['teams']]

df2

yields:

    teams   team1   team2
0   [SF, NYG]   SF  NYG
1   [SF, NYG]   SF  NYG
2   NaN        NaN  NaN
3   [SF, NYG]   SF  NYG
4   NaN        NaN  NaN
5   [SF, NYG]   SF  NYG
6   [SF, NYG]   SF  NYG
4
votes

Based on the previous answers, here is another solution which returns the same result as df2.teams.apply(pd.Series) with a much faster run time:

pd.DataFrame([{x: y for x, y in enumerate(item)} for item in df2['teams'].values.tolist()], index=df2.index)

Timings:

In [1]:
import pandas as pd
d1 = {'teams': [['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG'],
                ['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG']]}
df2 = pd.DataFrame(d1)
df2 = pd.concat([df2]*1000).reset_index(drop=True)

In [2]: %timeit df2['teams'].apply(pd.Series)

8.27 s ± 2.73 s per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [3]: %timeit pd.DataFrame([{x: y for x, y in enumerate(item)} for item in df2['teams'].values.tolist()], index=df2.index)

35.4 ms ± 5.22 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
3
votes

Here's another solution using df.transform and df.set_index:

>>> from operator import itemgetter
>>> df['teams'].transform({'item1': itemgetter(0), 'item2': itemgetter(1)})

  team1 team2
0    SF   NYG
1    SF   NYG
2    SF   NYG
3    SF   NYG
4    SF   NYG
5    SF   NYG
6    SF   NYG

Which of course can be generalized as:

>>> indices = range(len(df['teams'][0]))

>>> df['teams'].transform({f'team{i+1}': itemgetter(i) for i in indices})

  team1 team2
0    SF   NYG
1    SF   NYG
2    SF   NYG
3    SF   NYG
4    SF   NYG
5    SF   NYG
6    SF   NYG

This approach has the added benefit of extracting desried indices:

>>> df
                 teams
0  [SF, NYG, XYZ, ABC]
1  [SF, NYG, XYZ, ABC]
2  [SF, NYG, XYZ, ABC]
3  [SF, NYG, XYZ, ABC]
4  [SF, NYG, XYZ, ABC]
5  [SF, NYG, XYZ, ABC]
6  [SF, NYG, XYZ, ABC]

>>> indices = [0, 2]
>>> df['teams'].transform({f'team{i+1}': itemgetter(i) for i in indices})

  team1 team3
0    SF   XYZ
1    SF   XYZ
2    SF   XYZ
3    SF   XYZ
4    SF   XYZ
5    SF   XYZ
6    SF   XYZ