Any file system or operating system you want to talk about is fine by me. Nice!
On a ZX Spectrum, initializing a LOAD
command will put the system into a tight loop, reading the Audio In line.
Start-of-data is indicated by a constant tone, and after that a sequence of long/short pulses follow, where a short pulse is for a binary 0
and a longer one for a binary 1
(https://en.wikipedia.org/wiki/ZX_Spectrum_software). The tight load loop gathers bits until it fills a byte (8 bits), stores this into memory, increases the memory pointer, then loops back to scan for more bits.
Typically, the first thing a loader would read is a short, fixed format header, indicating at least the number of bytes to expect, and possibly additional information such as file name, file type and loading address. After reading this short header, the program could decide whether to continue loading the main bulk of the data, or exit the loading routine and display an appropriate message for the user.
An End-of-file state could be recognized by receiving as many bytes as expected (either a fixed number of bytes, hardwired in the software, or a variable number such as indicated in a header). An error was thrown if the loading loop did not receive a pulse in the expected frequency range for a certain amount of time.
A little background on this answer
The procedure described loads data from a regular audio tape - hence the need to scan Audio In (it connected with a standard plug to tape recorders). A LOAD
command is technically the same as open
a file - but it's physically tied to actually loading the file. This is because the tape recorder is not controlled by the computer, and you cannot (successfully) open a file but not load it.
The "tight loop" is mentioned because (1) the CPU, a Z80-A (if memory serves), was really slow: 3.5 MHz, and (2) the Spectrum had no internal clock! That means that it had to accurately keep count of the T-states (instruction times) for every. single. instruction. inside that loop, just to maintain the accurate beep timing.
Fortunately, that low CPU speed had the distinct advantage that you could calculate the number of cycles on a piece of paper, and thus the real world time that they would take.
C
and Linux; since what Linux and Windows do differs. Otherwise, it's a bit too broad. Also, any higher level language will end up calling either a C API for the system or compiling down to C to execute, so leaving at the level of "C" is putting it at the Least Common Denominator. – George Stocker