I have two rdd one rdd have just one column other have two columns to join the two RDD on key's I have add dummy value which is 0 , is there any other efficient way of doing this using join ?
val lines = sc.textFile("ml-100k/u.data")
val movienamesfile = sc.textFile("Cml-100k/u.item")
val moviesid = lines.map(x => x.split("\t")).map(x => (x(1),0))
val test = moviesid.map(x => x._1)
val movienames = movienamesfile.map(x => x.split("\\|")).map(x => (x(0),x(1)))
val shit = movienames.join(moviesid).distinct()
Edit:
Let me convert this question in SQL. Say for example I have table1 (moveid)
and table2 (movieid,moviename)
. In SQL we write something like:
select moviename, movieid, count(1)
from table2 inner join table table1 on table1.movieid=table2.moveid
group by ....
here in SQL table1
has only one column where as table2
has two columns still the join
works, same way in Spark can join on keys from both the RDD's.