I'm trying to join two datasets based on two columns. It works until I use one column but fails with below error
:29: error: value join is not a member of org.apache.spark.rdd.RDD[(String, String, (String, String, String, String, Double))] val finalFact = fact.join(dimensionWithSK).map { case(nk1,nk2, ((parts1,parts2,parts3,parts4,amount), (sk, prop1,prop2,prop3,prop4))) => (sk,amount) }
Code :
import org.apache.spark.rdd.RDD
def zipWithIndex[T](rdd: RDD[T]) = {
val partitionSizes = rdd.mapPartitions(p => Iterator(p.length)).collect
val ranges = partitionSizes.foldLeft(List((0, 0))) { case(accList, count) =>
val start = accList.head._2
val end = start + count
(start, end) :: accList
}.reverse.tail.toArray
rdd.mapPartitionsWithIndex( (index, partition) => {
val start = ranges(index)._1
val end = ranges(index)._2
val indexes = Iterator.range(start, end)
partition.zip(indexes)
})
}
val dimension = sc.
textFile("dimension.txt").
map{ line =>
val parts = line.split("\t")
(parts(0),parts(1),parts(2),parts(3),parts(4),parts(5))
}
val dimensionWithSK =
zipWithIndex(dimension).map { case((nk1,nk2,prop3,prop4,prop5,prop6), idx) => (nk1,nk2,(prop3,prop4,prop5,prop6,idx + nextSurrogateKey)) }
val fact = sc.
textFile("fact.txt").
map { line =>
val parts = line.split("\t")
// we need to output (Naturalkey, (FactId, Amount)) in
// order to be able to join with the dimension data.
(parts(0),parts(1), (parts(2),parts(3), parts(4),parts(5),parts(6).toDouble))
}
val finalFact = fact.join(dimensionWithSK).map { case(nk1,nk2, ((parts1,parts2,parts3,parts4,amount), (sk, prop1,prop2,prop3,prop4))) => (sk,amount) }
Request someone's help here.. Thanks Sridhar