I am running h2o random forest with the following parameter setting
model_rf <- h2o.randomForest(x = predictors, y = labels,
training_frame = train_data, classification = T,
importance = T,
verbose = T, type = "BigData", ntree = 50)
After running I am getting the following output.
Model Details:
==============
H2ORegressionModel: drf
Model ID: DRFModel__906d074da6ebf8057525b2b61c1c4c87
Model Summary:
number_of_trees model_size_in_bytes min_depth max_depth mean_depth min_leaves max_leaves mean_leaves
1 50.000000 2708173.000000 20.000000 20.000000 20.00000 4200.000000 5241.000000 4720.70000
H2ORegressionMetrics: drf
** Reported on training data. **
Description: Metrics reported on Out-Of-Bag training samples
MSE: 0.0006302392
R2 : -0.03751038
Following are my questions.
1) What does MSE and R2 mean?
2) If they are mean square error or similar why am I getting these metric for a classification setting?
3) How do I get other metrics like gini or auc?
4) Can i say that if these 2 params decrease with a different parameter setting, my model performance has improved?