0
votes

I know when random forest (RF) is used for classification, the AUC normally is used to assess the quality of classification after applying it to test data. However,I have no clue the parameter to assess the quality of regression with RF. Now I want to use RF for the regression analysis, e.g. using a metrics with several hundreds samples and features to predict the concentration (numerical) of chemicals.

  1. The first step is to run randomForest to build the regression model, with y as continuous numerics. How can I know whether the model is good or not, based on the Mean of squared residuals and % Var explained? Sometime my % Var explained is negative.

  2. Afterwards, if the model is fine and/or used straightforward for test data, and I get the predicted values. Now how can I assess the predicted values good or not? I read online some calculated the accuracy (formula: 1-abs(predicted-actual)/actual), which also makes sense to me. However, I have many zero values in my actual dataset, are there any other solutions to assess the accuracy of predicted values?

Looking forward to any suggestions and thanks in advance.

1

1 Answers

0
votes

The randomForest R package comes with an importance function which can used to determine the accuracy of a model. From the documentation:

importance(x, type=NULL, class=NULL, scale=TRUE, ...), where x is the output from your initial call to randomForest.

There are two types of importance measurements. One uses a permutation of out of bag data to test the accuracy of the model. The other uses the GINI index. Again, from the documentation:

Here are the definitions of the variable importance measures. The first measure is computed from permuting OOB data: For each tree, the prediction error on the out-of-bag portion of the data is recorded (error rate for classification, MSE for regression). Then the same is done after permuting each predictor variable. The difference between the two are then averaged over all trees, and normalized by the standard deviation of the differences. If the standard deviation of the differences is equal to 0 for a variable, the division is not done (but the average is almost always equal to 0 in that case).

The second measure is the total decrease in node impurities from splitting on the variable, averaged over all trees. For classification, the node impurity is measured by the Gini index. For regression, it is measured by residual sum of squares.

For further information, one more simple importance check you may do, really more of a sanity check than anything else, is to use something called the best constant model. The best constant model has a constant output, which is the mean of all responses in the test data set. The best constant model can be assumed to be the crudest model possible. You may compare the average performance of your random forest model against the best constant model, for a given set of test data. If the latter does not outperform the former by at least a factor of say 3-5, then your RF model is not very good.