Good afternoon! In the first stage where on input of Convolutional Neural Network (input layer) we recieve a source image (hence an image of handwritten English letter). First of all we are using an nxn window which goes from left to right for scanning image and multiplication on kernel (convolutional matrix) to build Feature maps? But nowhere written about what exact values a kernel should be have (In other words on what Kernel values I should multiply data retrieved from n*n window ). Is it suitable to multiply data on this Convolutional Kernel intended for edge detection? There a numerous Convolutional Kernels (Emboss, Gaussian Filter, Edge detection, Angle detection, etc.)? But nowhere is written to what exact kernel it is need to multiply data for detecting hand written symbols.
Sample of Edge detection 3*3 kernel
Convolutional operation for multiplication on kernel
In addition, if size of entire image is 30*30, than is it possible to use window of 5*5 for building feature maps? Would it be enough sufficient for reaching optimal precision of letter detection?
On what exact kernel it is best to multiply area of entire image for the maximum precision of letter recognition? Or initially all values in kernel is equaled to 0? Could i also ask, what formula or rule is applied to detect overall needed amount of to be built feature maps? Or if the task is in letter recognition of English Language, than in each stage of Feature maps building process there must be exact 25 feature maps? Thank you for reply!