You can use multi-fields for that purpose and have a not_analyzed
sub-field within your analyzed
field (let's call it item
in this example). Your mapping would have to look like this:
{
"yourtype": {
"properties": {
"item": {
"type": "string",
"fields": {
"raw": {
"type": "string",
"index": "not_analyzed"
}
}
}
}
}
}
With this kind of mapping, you can check how each of the values Hamburgers
and Hamburger Buns
are "viewed" by the analyzer with respect to your multi-field item
and item.raw
For Hamburger
:
curl -XGET 'localhost:9200/yourtypes/_analyze?field=item&pretty' -d 'Hamburger'
{
"tokens" : [ {
"token" : "hamburger",
"start_offset" : 0,
"end_offset" : 10,
"type" : "<ALPHANUM>",
"position" : 1
} ]
}
curl -XGET 'localhost:9200/yourtypes/_analyze?field=item.raw&pretty' -d 'Hamburger'
{
"tokens" : [ {
"token" : "Hamburger",
"start_offset" : 0,
"end_offset" : 10,
"type" : "word",
"position" : 1
} ]
}
For Hamburger Buns
:
curl -XGET 'localhost:9200/yourtypes/_analyze?field=item&pretty' -d 'Hamburger Buns'
{
"tokens" : [ {
"token" : "hamburger",
"start_offset" : 0,
"end_offset" : 10,
"type" : "<ALPHANUM>",
"position" : 1
}, {
"token" : "buns",
"start_offset" : 11,
"end_offset" : 15,
"type" : "<ALPHANUM>",
"position" : 2
} ]
}
curl -XGET 'localhost:9200/yourtypes/_analyze?field=item.raw&pretty' -d 'Hamburger Buns'
{
"tokens" : [ {
"token" : "Hamburger Buns",
"start_offset" : 0,
"end_offset" : 15,
"type" : "word",
"position" : 1
} ]
}
As you can see, the not_analyzed
field is going to be indexed untouched exactly as it was input.
Now, let's index two sample documents to illustrate this:
curl -XPOST localhost:9200/yourtypes/_bulk -d '
{"index": {"_type": "yourtype", "_id": 1}}
{"item": "Hamburger"}
{"index": {"_type": "yourtype", "_id": 2}}
{"item": "Hamburger Buns"}
'
And finally, to answer your question, if you want to have an exact match on Hamburger
, you can search within your sub-field item.raw
like this (note that the case has to match, too):
curl -XPOST localhost:9200/yourtypes/yourtype/_search -d '{
"query": {
"term": {
"item.raw": "Hamburger"
}
}
}'
And you'll get:
{
...
"hits" : {
"total" : 1,
"max_score" : 0.30685282,
"hits" : [ {
"_index" : "yourtypes",
"_type" : "yourtype",
"_id" : "1",
"_score" : 0.30685282,
"_source":{"item": "Hamburger"}
} ]
}
}
UPDATE (see comments/discussion below and question re-edit)
Taking your example from the comments and trying to have HaMbUrGeR BuNs
match Hamburger buns
you could simply achieve it with a match
query like this.
curl -XPOST localhost:9200/yourtypes/yourtype/_search?pretty -d '{
"query": {
"match": {
"item": {
"query": "HaMbUrGeR BuNs",
"operator": "and"
}
}
}
}'
Which based on the same two indexed documents above will yield
{
...
"hits" : {
"total" : 1,
"max_score" : 0.2712221,
"hits" : [ {
"_index" : "yourtypes",
"_type" : "yourtype",
"_id" : "2",
"_score" : 0.2712221,
"_source":{"item": "Hamburger Buns"}
} ]
}
}