Using the following dataframe I would like to group the data by replicate and group and then calculate a ratio of treatment values to control values.
structure(list(group = structure(c(1L, 1L, 1L, 1L, 2L, 2L, 2L,
2L), .Label = c("case", "controls"), class = "factor"), treatment = structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = "EPA", class = "factor"),
replicate = structure(c(2L, 4L, 3L, 1L, 2L, 4L, 3L, 1L), .Label = c("four",
"one", "three", "two"), class = "factor"), fatty_acid_family = structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = "saturated", class = "factor"),
fatty_acid = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = "14:0", class = "factor"),
quant = c(6.16, 6.415, 4.02, 4.05, 4.62, 4.435, 3.755, 3.755
)), .Names = c("group", "treatment", "replicate", "fatty_acid_family",
"fatty_acid", "quant"), class = "data.frame", row.names = c(NA,
-8L))
I have tried using dplyr as follows:
group_by(dataIn, replicate, group) %>% transmute(ratio = quant[group=="case"]/quant[group=="controls"])
but this results in Error: incompatible size (%d), expecting %d (the group size) or 1
Initially I thought this might be because I was trying to create 4 ratios from a df 8 rows deep and so I thought summarise
might be the answer (collapsing each group to one ratio) but that doesn't work either (my understanding is a shortcoming).
group_by(dataIn, replicate, group) %>% summarise(ratio = quant[group=="case"]/quant[group=="controls"])
replicate group ratio
1 four case NA
2 four controls NA
3 one case NA
4 one controls NA
5 three case NA
6 three controls NA
7 two case NA
8 two controls NA
I would appreciate some advice on where I'm going wrong or even if this can be done with dplyr
.
Thanks.
group
– eddi