You could use np.where. If cond
is a boolean array, and A
and B
are arrays, then
C = np.where(cond, A, B)
defines C to be equal to A
where cond
is True, and B
where cond
is False.
import numpy as np
import pandas as pd
a = [['10', '1.2', '4.2'], ['15', '70', '0.03'], ['8', '5', '0']]
df = pd.DataFrame(a, columns=['one', 'two', 'three'])
df['que'] = np.where((df['one'] >= df['two']) & (df['one'] <= df['three'])
, df['one'], np.nan)
yields
one two three que
0 10 1.2 4.2 10
1 15 70 0.03 NaN
2 8 5 0 NaN
If you have more than one condition, then you could use np.select instead.
For example, if you wish df['que']
to equal df['two']
when df['one'] < df['two']
, then
conditions = [
(df['one'] >= df['two']) & (df['one'] <= df['three']),
df['one'] < df['two']]
choices = [df['one'], df['two']]
df['que'] = np.select(conditions, choices, default=np.nan)
yields
one two three que
0 10 1.2 4.2 10
1 15 70 0.03 70
2 8 5 0 NaN
If we can assume that df['one'] >= df['two']
when df['one'] < df['two']
is
False, then the conditions and choices could be simplified to
conditions = [
df['one'] < df['two'],
df['one'] <= df['three']]
choices = [df['two'], df['one']]
(The assumption may not be true if df['one']
or df['two']
contain NaNs.)
Note that
a = [['10', '1.2', '4.2'], ['15', '70', '0.03'], ['8', '5', '0']]
df = pd.DataFrame(a, columns=['one', 'two', 'three'])
defines a DataFrame with string values. Since they look numeric, you might be better off converting those strings to floats:
df2 = df.astype(float)
This changes the results, however, since strings compare character-by-character, while floats are compared numerically.
In [61]: '10' <= '4.2'
Out[61]: True
In [62]: 10 <= 4.2
Out[62]: False
if
statement isFalse
? - Alex Rileyobject
. This allows arbitrary Python objects to be stored in the column, but it comes at the cost of slower numeric computation. Thus if the column is storing numeric data, using NaNs for not-a-numbers is preferable. - unutbua = [['10', '1.2', '4.2'], ['15', '70', '0.03'], ['8', '5', '0']]
. This creates confusing results with "correct" code:df['que'] = df['one'][(df['one'] >= df['two']) & (df['one'] <= df['three'])]
yields10
for the first line, while it should yieldNaN
if the input would have been integers. - Primer