25
votes

I have a pandas dataframe that looks like this:

   portion  used
0        1   1.0
1        2   0.3
2        3   0.0
3        4   0.8

I'd like to create a new column based on the used column, so that the df looks like this:

   portion  used    alert
0        1   1.0     Full
1        2   0.3  Partial
2        3   0.0    Empty
3        4   0.8  Partial
  • Create a new alert column based on
  • If used is 1.0, alert should be Full.
  • If used is 0.0, alert should be Empty.
  • Otherwise, alert should be Partial.

What's the best way to do that?

6

6 Answers

44
votes

You can define a function which returns your different states "Full", "Partial", "Empty", etc and then use df.apply to apply the function to each row. Note that you have to pass the keyword argument axis=1 to ensure that it applies the function to rows.

import pandas as pd

def alert(c):
  if c['used'] == 1.0:
    return 'Full'
  elif c['used'] == 0.0:
    return 'Empty'
  elif 0.0 < c['used'] < 1.0:
    return 'Partial'
  else:
    return 'Undefined'

df = pd.DataFrame(data={'portion':[1, 2, 3, 4], 'used':[1.0, 0.3, 0.0, 0.8]})

df['alert'] = df.apply(alert, axis=1)

#    portion  used    alert
# 0        1   1.0     Full
# 1        2   0.3  Partial
# 2        3   0.0    Empty
# 3        4   0.8  Partial
43
votes

Alternatively you could do:

import pandas as pd
import numpy as np
df = pd.DataFrame(data={'portion':np.arange(10000), 'used':np.random.rand(10000)})

%%timeit
df.loc[df['used'] == 1.0, 'alert'] = 'Full'
df.loc[df['used'] == 0.0, 'alert'] = 'Empty'
df.loc[(df['used'] >0.0) & (df['used'] < 1.0), 'alert'] = 'Partial'

Which gives the same output but runs about 100 times faster on 10000 rows:

100 loops, best of 3: 2.91 ms per loop

Then using apply:

%timeit df['alert'] = df.apply(alert, axis=1)

1 loops, best of 3: 287 ms per loop

I guess the choice depends on how big is your dataframe.

18
votes

Use np.where, is usually fast

In [845]: df['alert'] = np.where(df.used == 1, 'Full', 
                                 np.where(df.used == 0, 'Empty', 'Partial'))

In [846]: df
Out[846]:
   portion  used    alert
0        1   1.0     Full
1        2   0.3  Partial
2        3   0.0    Empty
3        4   0.8  Partial

Timings

In [848]: df.shape
Out[848]: (100000, 3)

In [849]: %timeit df['alert'] = np.where(df.used == 1, 'Full', np.where(df.used == 0, 'Empty', 'Partial'))
100 loops, best of 3: 6.17 ms per loop

In [850]: %%timeit
     ...: df.loc[df['used'] == 1.0, 'alert'] = 'Full'
     ...: df.loc[df['used'] == 0.0, 'alert'] = 'Empty'
     ...: df.loc[(df['used'] >0.0) & (df['used'] < 1.0), 'alert'] = 'Partial'
     ...:
10 loops, best of 3: 21.9 ms per loop

In [851]: %timeit df['alert'] = df.apply(alert, axis=1)
1 loop, best of 3: 2.79 s per loop
2
votes

Use np.select() which is designed to handle multiple conditions. It's much cleaner than nesting multiple levels of np.where() (and is just as fast).

Define the conditions/choices as two lists (paired element-wise) as well as an optional default value ("else" case):

conditions = [
    df.used.eq(0),
    df.used.eq(1),
]
choices = [
    'Empty',
    'Full',
]
df['alert'] = np.select(conditions, choices, default='Partial')

Or define the conditions/choices as a dictionary for maintainability (easier to keep them paired properly when making additions/revisions):

conditions = {
    'Empty': df.used.eq(0),
    'Full': df.used.eq(1),
}
df['alert'] = np.select(conditions.values(), conditions.keys(), default='Partial')

np.select() is very fast, though df.loc[] can be faster in some cases:

timing comparison

1
votes

Can't comment so making a new answer: Improving on Ffisegydd's approach, you can use a dictionary and the dict.get() method to make the function to pass in to .apply() easier to manage:

import pandas as pd

def alert(c):
    mapping = {1.0: 'Full', 0.0: 'Empty'}
    return mapping.get(c['used'], 'Partial')

df = pd.DataFrame(data={'portion':[1, 2, 3, 4], 'used':[1.0, 0.3, 0.0, 0.8]})

df['alert'] = df.apply(alert, axis=1)

Depending on the use case, you might like to define the dict outside of the function definition as well.

0
votes
df['TaxStatus'] = np.where(df.Public == 1, True, np.where(df.Public == 2, False))

This would appear to work, except for the ValueError: either both or neither of x and y should be given