34
votes

Which approach is better? Using a tuple, like:

if number in (1, 2):

or a list, like:

if number in [1, 2]:

Which one is recommended for such uses and why (both logical and performance wise)?

1
Third option: set (which has a faster membership test). - jonrsharpe
CPython will do some internal optimisation and store your list literal as a tuple anyway... - Jon Clements♦
Fourth option: frozenset, which has same membership test cost as set, O(1), but because it's immutable, the python interpreter knows the exact size of the hash table it needs to allocate, rather than leaving room for additional elements. - IceArdor
@IceArdor: but only in Python 3; using a set literal or frozenset([...]) expression in Python 2 means the object has to be created first, an operation more costly than the membership test against a tuple of equal length. - Martijn Pieters♦
@sapam: in which case a simple equality test will beat both. You need to take the average cost into account here, not the best-case scenario. For 2 elements or more, the set wins. Provided it is a constant stored with the bytecode. - Martijn Pieters♦

1 Answers

50
votes

The CPython interpreter replaces the second form with the first.

That's because loading the tuple from a constant is one operation, but the list would be 3 operations; load the two integer contents and build a new list object.

Because you are using a list literal that isn't otherwise reachable, it is substituted for a tuple:

>>> import dis
>>> dis.dis(compile('number in [1, 2]', '<stdin>', 'eval'))
  1           0 LOAD_NAME                0 (number)
              3 LOAD_CONST               2 ((1, 2))
              6 COMPARE_OP               6 (in)
              9 RETURN_VALUE        

Here the second bytecode loads a (1, 2) tuple as a constant, in one step. Compare this to creating a list object not used in a membership test:

>>> dis.dis(compile('[1, 2]', '<stdin>', 'eval'))
  1           0 LOAD_CONST               0 (1)
              3 LOAD_CONST               1 (2)
              6 BUILD_LIST               2
              9 RETURN_VALUE        

Here N+1 steps are required for a list object of length N.

This substitution is a CPython-specific peephole optimisation; see the Python/peephole.c source. For other Python implementations then, you want to stick with immutable objects instead.

That said, the best option when using Python 3.2 and up, is to use a set literal:

if number in {1, 2}:

as the peephole optimiser will replace that with a frozenset() object and membership tests against sets are O(1) constant operations:

>>> dis.dis(compile('number in {1, 2}', '<stdin>', 'eval'))
  1           0 LOAD_NAME                0 (number)
              3 LOAD_CONST               2 (frozenset({1, 2}))
              6 COMPARE_OP               6 (in)
              9 RETURN_VALUE

This optimization was added in Python 3.2 but wasn't backported to Python 2.

As such, the Python 2 optimiser doesn't recognize this option and the cost of building either a set or frozenset from the contents is almost guaranteed to be more costly than using a tuple for the test.

Set membership tests are O(1) and fast; testing against a tuple is O(n) worst case. Although testing against a set has to calculate the hash (higher constant cost, cached for immutable types), the cost for testing against a tuple other than the first element is always going to be higher. So on average, sets are easily faster:

>>> import timeit
>>> timeit.timeit('1 in (1, 3, 5)', number=10**7)  # best-case for tuples
0.21154764899984002
>>> timeit.timeit('8 in (1, 3, 5)', number=10**7)  # worst-case for tuples
0.5670104179880582
>>> timeit.timeit('1 in {1, 3, 5}', number=10**7)  # average-case for sets
0.2663505630043801
>>> timeit.timeit('8 in {1, 3, 5}', number=10**7)  # worst-case for sets
0.25939063701662235