How do you use the read enable to properly output a signal on a pin? I am using a ZyBo board and used a the FIFO Generator Wizard. I need an asynchronous, continuous writing to a FIFO and reading from the FIFO. This is why I need a write_enable signal and read_enable signal. However, I cannot read from the FIFO. I check to make sure the FIFO isn't empty and that read_enable is asserted. I read from the FIFO by serializing a 32bit word onto a data pin. (It alternates from serializing onto pin I and pin Q). How can I make sure I am reading from the FIFO and outputting the serialized data onto a pin? The following is my code:
// Wires and registers related to data capturing
wire capture_clk;
reg [31:0] capture_data;
wire capture_en;
reg [4:0] slowdown;
wire capture_full;
reg capture_open;
reg capture_open_cross;
reg capture_has_been_full;
reg capture_has_been_nonfull;
reg has_been_full_cross;
reg has_been_full;
// Data capture section
// ====================
always @(posedge capture_clk)
begin
if (capture_en)
capture_data <= user_w_write_32_data; // Data source being read from a file
// The slowdown register limits the data pace to 1/32 the bus_clk
// when capture_clk = bus_clk. This is necessary, because the
// core in the evaluation kit is configured for simplicity, and
// not for performance. Sustained data rates of 200 MB/sec are
// easily reached with performance-oriented setting.
// The slowdown register has no function in a real-life application.
slowdown <= slowdown + 1;
// capture_has_been_full remembers that the FIFO has been full
// until the file is closed. capture_has_been_nonfull prevents
// capture_has_been_full to respond to the initial full condition
// every FIFO displays on reset.
if (!capture_full)
capture_has_been_nonfull <= 1;
else if (!capture_open)
capture_has_been_nonfull <= 0;
if (capture_full && capture_has_been_nonfull)
capture_has_been_full <= 1;
else if (!capture_open)
capture_has_been_full <= 0;
end
// The dependency on slowdown is only for bogus data
assign capture_en = capture_open && !capture_full &&
!capture_has_been_full &&
(slowdown == 0);
// Clock crossing logic: bus_clk -> capture_clk
always @(posedge capture_clk)
begin
capture_open_cross <= user_r_read_32_open;
capture_open <= capture_open_cross;
end
// Clock crossing logic: capture_clk -> bus_clk
always @(posedge bus_clk)
begin
has_been_full_cross <= capture_has_been_full;
has_been_full <= has_been_full_cross;
end
// The user_r_read_32_eof signal is required to go from '0' to '1' only on
// a clock cycle following an asserted read enable, according to Xillybus'
// core API. This is assured, since it's a logical AND between
// user_r_read_32_empty and has_been_full. has_been_full goes high when the
// FIFO is full, so it's guaranteed that user_r_read_32_empty is low when
// that happens. On the other hand, user_r_read_32_empty is a FIFO's empty
// signal, which naturally meets the requirement.
assign user_r_read_32_eof = user_r_read_32_empty && has_been_full;
assign user_w_write_32_full = 0;
// The data capture clock here is bus_clk for simplicity, but clock domain
// crossing is done properly, so capture_clk can be an independent clock
// without any other changes.
assign capture_clk = bus_clk;
async_fifo_32x512 fifo_32 //FIFO created using Xilinx FIFO Generator Wizard
(
.rst(!user_r_read_32_open),
.wr_clk(capture_clk),
.rd_clk(bus_clk),
.din(capture_data),
.wr_en(capture_en),
.rd_en(user_r_read_32_rden),
.dout(user_r_read_32_data),
.full(capture_full),
.empty(user_r_read_32_empty)
);
reg Q_en = 1'b0; //starting value is 0 because first 32bit is I
reg [31:0] data_outI = 32'd0;
reg [31:0] data_outQ = 32'd0;
reg I = 1'b0;
reg Q = 1'b0;
reg counter_32_shift = 6'b000000;
reg temp = 1'b0;
always @(posedge bus_clk) begin
if(user_r_read_32_empty == 1'b0 && user_r_read_32_rden == 1'b1)begin //if something in FIFO
if(Q_en == 1'b0) begin //output onto pin I
if(counter_32_shift == 6'b000000) begin
data_outI <= user_r_read_32_data;
end else if(counter_32_shift != 5'd32) begin
I <= data_outI[0];
data_outI <= (data_outI >> 1);
Q <= data_outQ[0];
data_outQ <= (data_outQ >> 1);
counter_32_shift <= counter_32_shift + 1'b1;
end else begin //counter_32_shift == 32
I <= data_outI[0];
data_outI <= (data_outI >> 1);
Q <= data_outQ[0];
data_outQ <= (data_outQ >> 1);
counter_32_shift <= 6'd0;
Q_en <= ~Q_en;
end
end else if(Q_en == 1'b1) begin //Output onto pin Q
if(counter_32_shift == 6'd0) begin
data_outQ <= user_r_read_32_data;
end else if(counter_32_shift != 6'd32) begin
I <= data_outI[0];
data_outI <= (data_outI >> 1);
Q <= data_outQ[0];
data_outQ <= (data_outQ >> 1);
counter_32_shift <= counter_32_shift + 1'b1;
end else begin //counter_32_shift == 32
I = data_outI[0];
data_outI <= (data_outI >> 1);
Q = data_outQ[0];
data_outQ <= (data_outQ >> 1);
counter_32_shift <= 6'd0;
Q_en <= ~Q_en;
end
end// end Q_en compare
end //end check if FIFO empty
end //end always
Thanks in advance for all the help