0
votes

I'm trying to blend two partially overlapping textures in GLSL and am wondering if I'm misunderstanding the concept of multi-texturing. Is it required that the textures fully overlap or can you have two offset textures that blend only where they overlap?

I have two images similar to the following (minus grid lines and text): Example image

Ideally, the overlapping sections of the image would blend together nicely so that the final result would look like one smooth image that combines the two together. Overlapping orange pixels, for example, would blend together or take the higher intensity.

I'm new to GLSL and have been using this article GLSL Shader Article which uses a fragment shader to blend the textures (fairly standard).

Following the article, I@m setting up each texture like so:

glUseProgramObjectARB( m_hProgramObject );
GLint nParamObj = glGetUniformLocationARB( m_hProgramObject, pParamName_i );
...
glActiveTexture(GL_TEXTURE0 + nTextureID_i );
glBindTexture(GL_TEXTURE_2D, nTextureID_i);
glUniform1iARB( nParamObj, nTextureID_i );

I then bind each texture and draw triangle strips. My textures are created as:

glBindTexture( GL_TEXTURE_2D, m_nTextureID );
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);

glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
glPixelStorei(GL_UNPACK_ROW_LENGTH, 0);
glPixelStorei(GL_UNPACK_SKIP_ROWS, 0);
glPixelStorei(GL_UNPACK_SKIP_PIXELS, 0);

glTexImage2D(GL_TEXTURE_2D, 0, 4, nWidth, nHeight, 0, GL_RGBA,
    GL_UNSIGNED_BYTE, pbyData);

Does that process seem reasonable or am I misunderstanding the concept? Any tips or advice on how to achieve this?

1

1 Answers

0
votes

That process certainly seems adequate. The advantage of using a fragment shader is you get complete control over how the textures are combined. For the offset, you may want two sets of texture coordinates - one for each image - or you could generate them implicitly. Figuring out what you want and writing the fragment shader will probably be the difficult bit. Unfortunately if you want to blend many different textures, the fragment shader used in this way can get quite expensive or just wont work with too many textures bound.

Your example image doesn't look like any blending has occurred at all - the images are just positioned over each other. In this case, it's easier just to draw separate bits of geometry with mapped textures.

Blending is typically done by the fixed pipeline blending stage. For example using the following calls...

One of the most common configuration is alpha blending with the over operator: glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) in which the amount blended is given by the alpha value of the colour your drawing - possibly influenced by the A component in your GL_RGBA texture. You can further manipulate the blend equations if needed. See Blending.