std::vector is not a solution in this case. You don't want to resize/clear/(de)allocate all over again? Don't.
- fillVector() fills 'vector' with number of elements known in each iteration.
- Vector is internally represented as continuous block of memory of type T*.
- You don't want to (de)allocate memory each time.
Ok. Use simple struct:
struct upTo4ElemVectorOfInts
{
int data[4];
size_t elems_num;
};
And modify fillVector() to save additional info:
void fillVector(upTo4ElemVectorOfInts& vec)
{
//fill vec.data with values
vec.elems_num = filled_num; //save how many values was filled in this iteration
}
Use it in the very same way:
upTo4ElemVectorOfInts myVector;
for (int i = 0; i < 100; ++i)
{
fillVector(myVector);
//use of myVector:
//- myVector.data contains data (it's equivalent of std::vector<>::data())
//- myVector.elems_num will tell you how many numbers you should care about
//nothing needs to be resized/cleared
}
Additional Note:
If you want more general solution (to operate on any type or size), you can, of course, use templates:
template <class T, size_t Size>
struct upToSizeElemVectorOfTs
{
T data[Size];
size_t elems_num;
};
and adjust fillVector() to accept template instead of known type.
This solution is probably the fastest one. You can think: "Hey, and if I want to fill up to 100 elements? 1000? 10000? What then? 10000-elem array will consume a lot of storage!".
It would consume anyway. Vector is resizing itself automatically and this reallocs are out of your control and thus can be very inefficient. If your array is reasonably small and you can predict max required size, always use fixed-size storage created on local stack. It's faster, more efficient and simpler. Of course this won't work for arrays of 1.000.000 elements (you would get Stack Overflow in this case).