Shadertoy is called "TOY" for a reason. It's basically a puzzle. Given only a function that as input is told the current pixel position write a function that generates an image.
The website sets up WebGL to draw a single quad (rectangle) and then lets you provide a function that is passed the current pixel being rendered as fragCoord
. you then use that to compute some colors.
For example if you did this
void mainImage( out vec4 fragColor, in vec2 fragCoord )
{
vec4 red = vec4(1, 0, 0, 1);
vec4 green = vec4(0, 1, 0, 1);
fragColor = mix(red, green, sin(fragCoord.x / 10.0) * 0.5 + 0.5);
}
you'd get red and green stripes like this
https://www.shadertoy.com/view/3l2cRz
Shadertoy provides a few other inputs. The most common is the resolution being rendered to as iResolution
. If you divide the fragCoord
by iResolution
then you get values that go from 0 to 1 across and 0 to 1 down the canvas so you can easily make your function resolution independent.
Doing that we can draw an ellipse in the center like this
void mainImage(out vec4 fragColor, in vec2 fragCoord)
{
// uv goes from 0 to 1 across and up the canvas
vec2 uv = fragCoord / iResolution.xy;
vec4 red = vec4(1, 0, 0, 1);
vec4 green = vec4(0, 1, 0, 1);
float distanceFromCenter = distance(uv, vec2(0.5));
fragColor = mix(red, green, step(0.25, distanceFromCenter));
}
which produces
The second most common input is iTime
in seconds which you can use the animate parameters in your function over time.
So, given those inputs, if you apply enough math you can make an incredible image like for example this shadertoy shader generates this image
Which is amazing someone figured out the math needed to generate that image given only the input mentioned above.
Many of the most amazing shadertoy shaders use a technique called ray marching and some math called "signed distance fields" which you can read about here
But, I think it's important to point out that while there are many cool things to learn from shadertoy shaders, many of them apply only to this "puzzle" of "how do I do make a beautiful image with only one function whose input is a pixel position and whose output is a single color". They don't answer "how should I write shaders for a performant app".
Compare to the dolphin above to this speedboat game
https://www.youtube.com/watch?v=7v9gZK9HqqI
The dolphin shadertoy shader runs at about 2 frames a second when fullscreen on my NVidia GeForce GT 750 where as the speedboat game runs at 60fps. The reason the game runs fast is it uses more traditional techniques drawing shapes with projected triangles. Even an NVidia 1060 GTX can only run that dolphin shader at about 10 frames a second when fullscreen.