4
votes

I have some problems with the transformation of a matrix and the names of the rows and columns.

My problem is as follows:

As input-matrix I have a (symmetric) correlation matrix like this one:

enter image description here

The correlation-vector is given by the values of the lower triangular matrix:

enter image description here

Now, I want to compute the variance-covariance-matrix of the these correlations, which are approximately normally distributed with the variance-covariance-matrix:

enter image description here

The variances can be approximated by

enter image description here

-> N is the sample size (in this example N = 66)

The covariances can be approximated by

enter image description here

For example the covariance between r_02 and r_13 is given by

enter image description here

Now, I want to define a function in R which gets the correlation matrix as input and returns the variance-covariance matrix. However, I have problems to implement the calculation of the covariances. My idea is to give names to the elements of the correlation_vector as shown above (r_01, r_02...). Then I want to create the empty variance-cocariance matrix, which has the length of the correlation_vector. The rows and the columns should have the same names as the correlation_vector, so I can call them for example by [01][03]. Then I want to implement a for-loop which sets the value of i and j as well as k and l as shown in the formula for the covariance to the columns and rows of the correlations that I need as input for the covariance-formula. These must always be six different values (ij; ik; il; jk; jl; lk). This is my idea, but I don't now how to implement this in R.

This is my code (without the calculation of the covariances):

require(corpcor)

correlation_matrix_input <- matrix(data=c(1.00,0.561,0.393,0.561,0.561,1.00,0.286,0.549,0.393,0.286,1.00,0.286,0.561,0.549,0.286,1.00),ncol=4,byrow=T)

N <- 66 # Sample Size

vector_of_correlations <- sm2vec(correlation_matrix_input, diag=F) # lower triangular matrix of correlation_matrix_input

variance_covariance_matrix <- matrix(nrow = length(vector_of_correlations), ncol = length(vector_of_correlations)) # creates the empty variance-covariance matrix


# function to fill the matrix by calculating the variance and the covariances

variances_covariances <- function(vector_of_correlations_input, sample_size) {

    for (i in (seq(along = vector_of_correlations_input))) {
        for (j in (seq(along = vector_of_correlations_input))) {

            # calculate the variances for the diagonale
            if (i == j) {
                variance_covariance_matrix[i,j] = ((1-vector_of_correlations_input[i]**2)**2)/sample_size 
            }

            # calculate the covariances
            if (i != j) {

                variance_covariance_matrix[i,j] = ???

            }
        }
    }

return(variance_covariance_matrix); 
}

Does anyone have an idea, how to implement the calculation of the covariances using the formula shown above?

I would be grateful for any kind of help regarding this problem!!!

3
What is Korrelationsmatrix_Studie_i? I do not see where it is defined.Mark Miller
That was a mistake. It is correlation_matrix_input.jeffrey

3 Answers

4
votes

It's easier if you keep r as a matrix and use this helper function to make things clearer:

covr <- function(r, i, j, k, l, n){
    if(i==k && j==l)
        return((1-r[i,j]^2)^2/n)
    ( 0.5 * r[i,j]*r[k,l]*(r[i,k]^2 + r[i,l]^2 + r[j,k]^2 + r[j,l]^2) +
      r[i,k]*r[j,l] + r[i,l]*r[j,k] - (r[i,j]*r[i,k]*r[i,l] +
      r[j,i]*r[j,k]*r[j,l] + r[k,i]*r[k,j]*r[k,l] + r[l,i]*r[l,j]*r[l,k]) )/n
}

Now define this second function:

vcovr <- function(r, n){
    p <- combn(nrow(r), 2)
    q <- seq(ncol(p))
    outer(q, q, Vectorize(function(x,y) covr(r, p[1,x], p[2,x], p[1,y], p[2,y], n)))
}

And voila:

> vcovr(correlation_matrix_input, 66)
            [,1]        [,2]        [,3]        [,4]        [,5]        [,6]
[1,] 0.007115262 0.001550264 0.002917481 0.003047666 0.003101602 0.001705781
[2,] 0.001550264 0.010832674 0.001550264 0.006109565 0.001127916 0.006109565
[3,] 0.002917481 0.001550264 0.007115262 0.001705781 0.003101602 0.003047666
[4,] 0.003047666 0.006109565 0.001705781 0.012774221 0.002036422 0.006625868
[5,] 0.003101602 0.001127916 0.003101602 0.002036422 0.007394554 0.002036422
[6,] 0.001705781 0.006109565 0.003047666 0.006625868 0.002036422 0.012774221

EDIT:

For the transformed Z values, as in your comment, you can use this:

covrZ <- function(r, i, j, k, l, n){
    if(i==k && j==l)
        return(1/(n-3))
    covr(r, i, j, k, l, n) / ((1-r[i,j]^2)*(1-r[k,l]^2))
}

And simply replace it in vcovr:

vcovrZ <- function(r, n){
    p <- combn(nrow(r), 2)
    q <- seq(ncol(p))
    outer(q, q, Vectorize(function(x,y) covrZ(r, p[1,x], p[2,x], p[1,y], p[2,y], n)))
}

New result:

> vcovrZ(correlation_matrix_input,66)
            [,1]        [,2]        [,3]        [,4]        [,5]        [,6]
[1,] 0.015873016 0.002675460 0.006212598 0.004843517 0.006478743 0.002710920
[2,] 0.002675460 0.015873016 0.002675460 0.007869213 0.001909452 0.007869213
[3,] 0.006212598 0.002675460 0.015873016 0.002710920 0.006478743 0.004843517
[4,] 0.004843517 0.007869213 0.002710920 0.015873016 0.003174685 0.007858948
[5,] 0.006478743 0.001909452 0.006478743 0.003174685 0.015873016 0.003174685
[6,] 0.002710920 0.007869213 0.004843517 0.007858948 0.003174685 0.015873016
2
votes

I wrote an approach using combn and row/column indices to generate the different combinations of p.

variances_covariances <- function(m, n) {
  r <- m[lower.tri(m)]
  var <- (1-r^2)^2

  ## generate row/column indices
  rowIdx <- rep(1:nrow(m), times=colSums(lower.tri(m)))
  colIdx <- rep(1:ncol(m), times=rowSums(lower.tri(m)))

  ## generate combinations
  cov <- combn(length(r), 2, FUN=function(i) {
    ## current row/column indices
    cr <- rowIdx[i] ## i,k
    cc <- colIdx[i] ## j,l

    ## define 6 cases
    p.ij <- m[cr[1], cc[1]]
    p.ik <- m[cr[1], cr[2]]
    p.il <- m[cr[1], cc[2]]
    p.jk <- m[cc[1], cr[2]]
    p.jl <- m[cc[1], cc[2]]
    p.kl <- m[cr[2], cc[2]]

    ## calculate covariance
    co <- 0.5 * p.ij * p.kl * (p.ik^2 + p.il^2 + p.jk^2 + p.jl^2) +
          p.ik * p.jl + p.il * p.jk -
          (p.ij * p.ik * p.il + p.ij * p.jk * p.jl + p.ik * p.jk * p.kl + p.il * p.jl * p.kl)
    return(co)
  })

  ## create output matrix
  com <- matrix(NA, ncol=length(r), nrow=length(r))
  com[lower.tri(com)] <- cov
  com[upper.tri(com)] <- t(com)[upper.tri(com)]
  diag(com) <- var

  return(com/n)
}

Output:

m <- matrix(data=c(1.000, 0.561, 0.393, 0.561,
                   0.561, 1.000, 0.286, 0.549,
                   0.393, 0.286, 1.000, 0.286,
                   0.561, 0.549, 0.286, 1.00), ncol=4, byrow=T)

variances_covariances(m, 66)
#            [,1]        [,2]        [,3]        [,4]        [,5]        [,6]
#[1,] 0.007115262 0.001550264 0.001550264 0.003101602 0.003101602 0.001705781
#[2,] 0.001550264 0.010832674 0.010832674 0.001127916 0.001127916 0.006109565
#[3,] 0.001550264 0.010832674 0.007115262 0.001127916 0.001127916 0.006109565
#[4,] 0.003101602 0.001127916 0.001127916 0.012774221 0.007394554 0.002036422
#[5,] 0.003101602 0.001127916 0.001127916 0.007394554 0.007394554 0.002036422
#[6,] 0.001705781 0.006109565 0.006109565 0.002036422 0.002036422 0.012774221

I hope, I have done everything right.

-2
votes

salam/hello

variance_covariance_matrix<- diag (variance vector, length (r),length (r))
pcomb <- combn(length(r), 2)
for (k in 1:length(r)){
    i<- pcomb[1,k]
    j<- pcomb[2,k]
    variance_covariance_matrix[i,j]<- variance_covariance_matrix [j,i]<- genCorr[k] * sqrt (sig2g[i])  * sqrt (sig2g[j])

}