Goal
Use this data:
dat<-structure(list(study = c(1, 1, 2, 2, 3, 4, 4, 5, 5), nrate = c(1, 1, 1, 2, 1, 1, 1, 1, 2), trt = c(1, 2, 1, 1, 1, 1, 2, 1, 2), n2i = c(25, 25, 40, 40, 50, 30, 30, 20, 30), Ni = c(75, 75, 80, 80, 100, 90, 90, 40, 60), yi = structure(c(1.75557336268135, 1.16269114535263, 2.25236533601502, 1.65098691534697, 1.93238812372334, 2.80537854506277, 2.47373334918987, 1.36964712768673, 1.18135471573816 ), measure = "ROM", ni = c(50, 50, 80, 80, 100, 60, 60, 40, 60)), vi = c(0.0972473617680551, 0.10417464101422, 0.0525739144226032, 0.0135660003587117, 0.036197209164285, 0.341666364303935, 0.342935708755073, 0.0303744729767536, 0.00416144452369287 )), .Names = c("study", "nrate", "trt", "n2i", "Ni", "yi", "vi"), row.names = c(NA, -9L), class = c("escalc", "data.frame" ), yi.names = "yi", vi.names = "vi", digits = 4)
dat<-data.frame(dat)
To get this variance-covariance matrix:
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 0.097 0.054 0.000 0.000 0.000 0.000 0.000 0.00 0.000
[2,] 0.054 0.104 0.000 0.000 0.000 0.000 0.000 0.00 0.000
[3,] 0.000 0.000 0.053 0.000 0.000 0.000 0.000 0.00 0.000
[4,] 0.000 0.000 0.000 0.014 0.000 0.000 0.000 0.00 0.000
[5,] 0.000 0.000 0.000 0.000 0.036 0.000 0.000 0.00 0.000
[6,] 0.000 0.000 0.000 0.000 0.000 0.342 0.072 0.00 0.000
[7,] 0.000 0.000 0.000 0.000 0.000 0.072 0.343 0.00 0.000
[8,] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.03 0.000
[9,] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00 0.004
I want to use this function to calculate covariances between "yi's" by level of ("study"*"nrate") and leave the "vi" variances I have alone on the diagonals:
library(metafor) #bldiag comes from here
calc.v <- function(x) {
v <- matrix(1/x$n2i[1] + outer(x$yi, x$yi, "*")/(2*x$Ni[1]), nrow=nrow(x), ncol=nrow(x))
diag(v) <- x$vi
v
}
And applying the following to the data gives a var-cov matrix that is almost there*, if only I could only apply it at unique "study"*"nrate" levels rather than at the "study" level and get back a matrix.
V <- bldiag(lapply(split(dat, dat[,c("study")]), calc.v))
Problem
I tried:
V <- bldiag(lapply(split(dat, dat[,c("study","nrate")]), calc.v))
and
V <- bldiag(lapply(unique(dat[,c("study","nrate")]), calc.v))
which give errors Error in bldiag(lapply(split(dat, dat[, c("study", "nrate")]), calc.v)) : replacement has length zero
and Error in x$n2i : $ operator is invalid for atomic vectors
about the bldiag
and then my calc.v
function, respectively.
Footnotes
*Almost there matrix (compare with above):
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 0.097 0.054 0.000 0.000 0.000 0.000 0.000 0.00 0.000
[2,] 0.054 0.104 0.000 0.000 0.000 0.000 0.000 0.00 0.000
[3,] 0.000 0.000 0.053 0.048 0.000 0.000 0.000 0.00 0.000
[4,] 0.000 0.000 0.048 0.014 0.000 0.000 0.000 0.00 0.000
[5,] 0.000 0.000 0.000 0.000 0.036 0.000 0.000 0.00 0.000
[6,] 0.000 0.000 0.000 0.000 0.000 0.342 0.072 0.00 0.000
[7,] 0.000 0.000 0.000 0.000 0.000 0.072 0.343 0.00 0.000
[8,] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.03 0.070
[9,] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.07 0.004
Also apparently there is a vcov
function for fitted models but I don't see how that helps me.