I'm creating a facetted plot to view predicted vs. actual values side by side with a plot of predicted value vs. residuals. I'll be using shiny
to help explore the results of modeling efforts using different training parameters. I train the model with 85% of the data, test on the remaining 15%, and repeat this 5 times, collecting actual/predicted values each time. After calculating the residuals, my data.frame
looks like this:
head(results)
act pred resid
2 52.81000 52.86750 -0.05750133
3 44.46000 42.76825 1.69175252
4 54.58667 49.00482 5.58184181
5 36.23333 35.52386 0.70947731
6 53.22667 48.79429 4.43237981
7 41.72333 41.57504 0.14829173
What I want:
- Side by side plot of
pred
vs.act
andpred
vs.resid
- The x/y range/limits for
pred
vs.act
to be the same, ideally frommin(min(results$act), min(results$pred))
tomax(max(results$act), max(results$pred))
- The x/y range/limits for
pred
vs.resid
not to be affected by what I do to the actual vs. predicted plot. Plotting forx
over only the predicted values andy
over only the residual range is fine.
In order to view both plots side by side, I melt the data:
library(reshape2)
plot <- melt(results, id.vars = "pred")
Now plot:
library(ggplot2)
p <- ggplot(plot, aes(x = pred, y = value)) + geom_point(size = 2.5) + theme_bw()
p <- p + facet_wrap(~variable, scales = "free")
print(p)
That's pretty close to what I want:
What I'd like is for the x and y ranges for actual vs. predicted to be the same, but I'm not sure how to specify that, and I don't need that done for the predicted vs. residual plot since the ranges are completely different.
I tried adding something like this for both scale_x_continous
and scale_y_continuous
:
min_xy <- min(min(plot$pred), min(plot$value))
max_xy <- max(max(plot$pred), max(plot$value))
p <- ggplot(plot, aes(x = pred, y = value)) + geom_point(size = 2.5) + theme_bw()
p <- p + facet_wrap(~variable, scales = "free")
p <- p + scale_x_continuous(limits = c(min_xy, max_xy))
p <- p + scale_y_continuous(limits = c(min_xy, max_xy))
print(p)
But that picks up the min()
of the residual values.
One last idea I had is to store the value of the minimum act
and pred
variables before melting, and then add them to the melted data frame in order to dictate in which facet they appear:
head(results)
act pred resid
2 52.81000 52.86750 -0.05750133
3 44.46000 42.76825 1.69175252
4 54.58667 49.00482 5.58184181
5 36.23333 35.52386 0.70947731
min_xy <- min(min(results$act), min(results$pred))
max_xy <- max(max(results$act), max(results$pred))
plot <- melt(results, id.vars = "pred")
plot <- rbind(plot, data.frame(pred = c(min_xy, max_xy),
variable = c("act", "act"), value = c(max_xy, min_xy)))
p <- ggplot(plot, aes(x = pred, y = value)) + geom_point(size = 2.5) + theme_bw()
p <- p + facet_wrap(~variable, scales = "free")
print(p)
That does what I want, with the exception that the points show up, too:
Any suggestions for doing something like this?
I saw this idea to add geom_blank()
, but I'm not sure how to specify the aes()
bit and have it work properly, or what the geom_point()
equivalent is to the histogram use of aes(y = max(..count..))
.
Here's data to play with (my actual, predicted, and residual values prior to melting):
> dput(results)
structure(list(act = c(52.81, 44.46, 54.5866666666667, 36.2333333333333,
53.2266666666667, 41.7233333333333, 35.2966666666667, 30.6833333333333,
39.25, 35.8866666666667, 25.1, 29.0466666666667, 23.2766666666667,
56.3866666666667, 42.92, 41.57, 27.92, 23.16, 38.0166666666667,
61.8966666666667, 37.41, 41.6333333333333, 35.9466666666667,
48.9933333333333, 30.5666666666667, 32.08, 40.3633333333333,
53.2266666666667, 64.6066666666667, 38.5366666666667, 41.7233333333333,
25.78, 33.4066666666667, 27.8033333333333, 39.3266666666667,
48.9933333333333, 25.2433333333333, 32.67, 55.17, 42.92, 54.5866666666667,
23.16, 64.6066666666667, 40.7966666666667, 39.0166666666667,
41.6333333333333, 35.8866666666667, 25.1, 23.2766666666667, 44.46,
34.2166666666667, 40.8033333333333, 24.5766666666667, 35.73,
61.8966666666667, 62.1833333333333, 74.6466666666667, 39.4366666666667,
36.6, 27.1333333333333), pred = c(52.8675013282404, 42.7682474758679,
49.0048248585123, 35.5238560262515, 48.7942868566949, 41.5750416040131,
33.9548164913007, 29.9787449128663, 37.6443975781139, 36.7196211666685,
27.6043278172077, 27.0615724310721, 31.2073056885252, 55.0886903524179,
43.0895814712768, 43.0895814712768, 32.3549865881578, 26.2428426737583,
36.6926037128343, 56.7987490221996, 45.0370788180147, 41.8231642271826,
38.3297859332601, 49.5343916620086, 30.8535641206809, 29.0117492750411,
36.9767968381391, 49.0826677983065, 54.4678549541069, 35.5059204731218,
41.5333417555995, 27.6069075391361, 31.2404889715121, 27.8920960978598,
37.8505531149324, 49.2616631533957, 30.366837650159, 31.1623492639066,
55.0456078770405, 42.772538591063, 49.2419293590535, 26.1963523976241,
54.4080781796616, 44.9796700541254, 34.6996927469131, 41.6227713664027,
36.8449646519306, 27.5318686661673, 31.6641793552795, 42.8198894266632,
40.5769177148146, 40.5769177148146, 29.3807781312816, 36.8579132935989,
55.5617033901752, 55.8097119335638, 55.1041728261666, 43.6094641699075,
37.0674887276681, 27.3876960746536), resid = c(-0.0575013282403773,
1.69175252413213, 5.58184180815435, 0.709477307081826, 4.43237980997177,
0.148291729320228, 1.34185017536599, 0.704588420467079, 1.60560242188613,
-0.832954500001826, -2.50432781720766, 1.98509423559461, -7.93063902185855,
1.29797631424874, -0.169581471276786, -1.51958147127679, -4.43498658815778,
-3.08284267375831, 1.32406295383237, 5.09791764446704, -7.62707881801468,
-0.189830893849219, -2.38311926659339, -0.541058328675241, -0.286897454014273,
3.06825072495888, 3.38653649519422, 4.14399886836018, 10.1388117125598,
3.03074619354486, 0.189991577733821, -1.82690753913609, 2.16617769515461,
-0.088762764526507, 1.47611355173427, -0.268329820062384, -5.12350431682565,
1.5076507360934, 0.124392122959534, 0.147461408936991, 5.34473730761318,
-3.03635239762411, 10.1985884870051, -4.18300338745873, 4.31697391975358,
0.0105619669306023, -0.958297985263961, -2.43186866616734, -8.38751268861282,
1.64011057333683, -6.36025104814794, 0.226415618518729, -4.80411146461488,
-1.1279132935989, 6.33496327649151, 6.37362139976954, 19.5424938405001,
-4.17279750324084, -0.467488727668119, -0.254362741320246)), .Names = c("act",
"pred", "resid"), row.names = c(2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L,
10L, 11L, 12L, 13L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L,
24L, 25L, 26L, 28L, 29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L, 37L,
38L, 39L, 41L, 42L, 43L, 44L, 45L, 46L, 47L, 48L, 49L, 50L, 51L,
52L, 54L, 55L, 56L, 57L, 58L, 59L, 60L, 61L, 62L, 63L, 64L, 65L
), class = "data.frame")
grid.arrange
. – joranggplot(plot, aes(x = pred, y = value)) + geom_point()
with no facetting? Wouldn't that really shrink the scale of the residuals to make it hard to detect non-randomness/skew? – Hendyvariable
value created bymelt()
. Then again, I suppose I could store these in a list created bylapply
to plot various combinations. Thanks for the input. If you want to create agrid
solution, I can accept the answer, though if that's the route we take, this might as well be a duplicate of the othergrid
-based solutions. – Hendygrid.arrange
which almost invariably messes up the layout. I wish gtable's longstanding bugs were addressed. – baptiste