180
votes

Today I was positively surprised by the fact that while reading data from a data file (for example) pandas is able to recognize types of values:

df = pandas.read_csv('test.dat', delimiter=r"\s+", names=['col1','col2','col3'])

For example it can be checked in this way:

for i, r in df.iterrows():
    print type(r['col1']), type(r['col2']), type(r['col3'])

In particular integer, floats and strings were recognized correctly. However, I have a column that has dates in the following format: 2013-6-4. These dates were recognized as strings (not as python date-objects). Is there a way to "learn" pandas to recognized dates?

10
Please always state the pandas version, for this sort of version-dependent question. In July 2013, this would have been v0.11 - smci
And the dtypes are fixed for each column, you don't need to iterate over df.iterrows() and view them for every single row, just do df.info() once. - smci

10 Answers

379
votes

You should add parse_dates=True, or parse_dates=['column name'] when reading, thats usually enough to magically parse it. But there are always weird formats which need to be defined manually. In such a case you can also add a date parser function, which is the most flexible way possible.

Suppose you have a column 'datetime' with your string, then:

from datetime import datetime
dateparse = lambda x: datetime.strptime(x, '%Y-%m-%d %H:%M:%S')

df = pd.read_csv(infile, parse_dates=['datetime'], date_parser=dateparse)

This way you can even combine multiple columns into a single datetime column, this merges a 'date' and a 'time' column into a single 'datetime' column:

dateparse = lambda x: datetime.strptime(x, '%Y-%m-%d %H:%M:%S')

df = pd.read_csv(infile, parse_dates={'datetime': ['date', 'time']}, date_parser=dateparse)

You can find directives (i.e. the letters to be used for different formats) for strptime and strftime in this page.

23
votes

Perhaps the pandas interface has changed since @Rutger answered, but in the version I'm using (0.15.2), the date_parser function receives a list of dates instead of a single value. In this case, his code should be updated like so:

dateparse = lambda dates: [pd.datetime.strptime(d, '%Y-%m-%d %H:%M:%S') for d in dates]

df = pd.read_csv(infile, parse_dates=['datetime'], date_parser=dateparse)
15
votes

You could use pandas.to_datetime() as recommended in the documentation for pandas.read_csv():

If a column or index contains an unparseable date, the entire column or index will be returned unaltered as an object data type. For non-standard datetime parsing, use pd.to_datetime after pd.read_csv.

Demo:

>>> D = {'date': '2013-6-4'}
>>> df = pd.DataFrame(D, index=[0])
>>> df
       date
0  2013-6-4
>>> df.dtypes
date    object
dtype: object
>>> df['date'] = pd.to_datetime(df.date, format='%Y-%m-%d')
>>> df
        date
0 2013-06-04
>>> df.dtypes
date    datetime64[ns]
dtype: object
11
votes

pandas read_csv method is great for parsing dates. Complete documentation at http://pandas.pydata.org/pandas-docs/stable/generated/pandas.io.parsers.read_csv.html

you can even have the different date parts in different columns and pass the parameter:

parse_dates : boolean, list of ints or names, list of lists, or dict
If True -> try parsing the index. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a
separate date column. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date
column. {‘foo’ : [1, 3]} -> parse columns 1, 3 as date and call result ‘foo’

The default sensing of dates works great, but it seems to be biased towards north american Date formats. If you live elsewhere you might occasionally be caught by the results. As far as I can remember 1/6/2000 means 6 January in the USA as opposed to 1 Jun where I live. It is smart enough to swing them around if dates like 23/6/2000 are used. Probably safer to stay with YYYYMMDD variations of date though. Apologies to pandas developers,here but i have not tested it with local dates recently.

you can use the date_parser parameter to pass a function to convert your format.

date_parser : function
Function to use for converting a sequence of string columns to an array of datetime
instances. The default uses dateutil.parser.parser to do the conversion.
10
votes

When merging two columns into a single datetime column, the accepted answer generates an error (pandas version 0.20.3), since the columns are sent to the date_parser function separately.

The following works:

def dateparse(d,t):
    dt = d + " " + t
    return pd.datetime.strptime(dt, '%d/%m/%Y %H:%M:%S')

df = pd.read_csv(infile, parse_dates={'datetime': ['date', 'time']}, date_parser=dateparse)
8
votes

Yes - according to the pandas.read_csv documentation:

Note: A fast-path exists for iso8601-formatted dates.

So if your csv has a column named datetime and the dates looks like 2013-01-01T01:01 for example, running this will make pandas (I'm on v0.19.2) pick up the date and time automatically:

df = pd.read_csv('test.csv', parse_dates=['datetime'])

Note that you need to explicitly pass parse_dates, it doesn't work without.

Verify with:

df.dtypes

You should see the datatype of the column is datetime64[ns]

2
votes

While loading csv file contain date column.We have two approach to to make pandas to recognize date column i.e

  1. Pandas explicit recognize the format by arg date_parser=mydateparser

  2. Pandas implicit recognize the format by agr infer_datetime_format=True

Some of the date column data

01/01/18

01/02/18

Here we don't know the first two things It may be month or day. So in this case we have to use Method 1:- Explicit pass the format

    mydateparser = lambda x: pd.datetime.strptime(x, "%m/%d/%y")
    df = pd.read_csv(file_name, parse_dates=['date_col_name'],
date_parser=mydateparser)

Method 2:- Implicit or Automatically recognize the format

df = pd.read_csv(file_name, parse_dates=[date_col_name],infer_datetime_format=True)
2
votes

In addition to what the other replies said, if you have to parse very large files with hundreds of thousands of timestamps, date_parser can prove to be a huge performance bottleneck, as it's a Python function called once per row. You can get a sizeable performance improvements by instead keeping the dates as text while parsing the CSV file and then converting the entire column into dates in one go:

# For a data column
df = pd.read_csv(infile, parse_dates={'mydatetime': ['date', 'time']})

df['mydatetime'] = pd.to_datetime(df['mydatetime'], exact=True, cache=True, format='%Y-%m-%d %H:%M:%S')
# For a DateTimeIndex
df = pd.read_csv(infile, parse_dates={'mydatetime': ['date', 'time']}, index_col='mydatetime')

df.index = pd.to_datetime(df.index, exact=True, cache=True, format='%Y-%m-%d %H:%M:%S')
# For a MultiIndex
df = pd.read_csv(infile, parse_dates={'mydatetime': ['date', 'time']}, index_col=['mydatetime', 'num'])

idx_mydatetime = df.index.get_level_values(0)
idx_num = df.index.get_level_values(1)
idx_mydatetime = pd.to_datetime(idx_mydatetime, exact=True, cache=True, format='%Y-%m-%d %H:%M:%S')
df.index = pd.MultiIndex.from_arrays([idx_mydatetime, idx_num])

For my use case on a file with 200k rows (one timestamp per row), that cut down processing time from about a minute to less than a second.

1
votes

If performance matters to you make sure you time:

import sys
import timeit
import pandas as pd

print('Python %s on %s' % (sys.version, sys.platform))
print('Pandas version %s' % pd.__version__)

repeat = 3
numbers = 100

def time(statement, _setup=None):
    print (min(
        timeit.Timer(statement, setup=_setup or setup).repeat(
            repeat, numbers)))

print("Format %m/%d/%y")
setup = """import pandas as pd
import io

data = io.StringIO('''\
ProductCode,Date
''' + '''\
x1,07/29/15
x2,07/29/15
x3,07/29/15
x4,07/30/15
x5,07/29/15
x6,07/29/15
x7,07/29/15
y7,08/05/15
x8,08/05/15
z3,08/05/15
''' * 100)"""

time('pd.read_csv(data); data.seek(0)')
time('pd.read_csv(data, parse_dates=["Date"]); data.seek(0)')
time('pd.read_csv(data, parse_dates=["Date"],'
     'infer_datetime_format=True); data.seek(0)')
time('pd.read_csv(data, parse_dates=["Date"],'
     'date_parser=lambda x: pd.datetime.strptime(x, "%m/%d/%y")); data.seek(0)')

print("Format %Y-%m-%d %H:%M:%S")
setup = """import pandas as pd
import io

data = io.StringIO('''\
ProductCode,Date
''' + '''\
x1,2016-10-15 00:00:43
x2,2016-10-15 00:00:56
x3,2016-10-15 00:00:56
x4,2016-10-15 00:00:12
x5,2016-10-15 00:00:34
x6,2016-10-15 00:00:55
x7,2016-10-15 00:00:06
y7,2016-10-15 00:00:01
x8,2016-10-15 00:00:00
z3,2016-10-15 00:00:02
''' * 1000)"""

time('pd.read_csv(data); data.seek(0)')
time('pd.read_csv(data, parse_dates=["Date"]); data.seek(0)')
time('pd.read_csv(data, parse_dates=["Date"],'
     'infer_datetime_format=True); data.seek(0)')
time('pd.read_csv(data, parse_dates=["Date"],'
     'date_parser=lambda x: pd.datetime.strptime(x, "%Y-%m-%d %H:%M:%S")); data.seek(0)')

prints:

Python 3.7.1 (v3.7.1:260ec2c36a, Oct 20 2018, 03:13:28) 
[Clang 6.0 (clang-600.0.57)] on darwin
Pandas version 0.23.4
Format %m/%d/%y
0.19123052499999993
8.20691274
8.143124389
1.2384357139999977
Format %Y-%m-%d %H:%M:%S
0.5238807110000039
0.9202787830000005
0.9832778819999959
12.002349824999996

So with iso8601-formatted date (%Y-%m-%d %H:%M:%S is apparently an iso8601-formatted date, I guess the T can be dropped and replaced by a space) you should not specify infer_datetime_format (which does not make a difference with more common ones either apparently) and passing your own parser in just cripples performance. On the other hand, date_parser does make a difference with not so standard day formats. Be sure to time before you optimize, as usual.

0
votes

You can use the parameter date_parser with a function for converting a sequence of string columns to an array of datetime instances:

parser = lambda x: pd.to_datetime(x, format='%Y-%m-%d %H:%M:%S')
pd.read_csv('path', date_parser=parser, parse_dates=['date_col1', 'date_col2'])