The above example works but causes many tools to complain about the DICOMs and they cannot even be read at all using itk/SimpleITK as a stack. The best way I have found for making DICOMs from numpy is by using the SimpleITK tools and generating the DICOMs slice-by-slice. A basic example (https://github.com/zivy/SimpleITK/blob/8e94451e4c0e90bcc6a1ffdd7bc3d56c81f58d80/Examples/DicomSeriesReadModifyWrite/DicomSeriesReadModifySeriesWrite.py) shows how to load in a stack, perform a transformation and then resave the files, but this can easily be modified by using the
import SimpleITK as sitk
filtered_image = sitk.GetImageFromArray(my_numpy_array)
The number of tags ultimately in output image is quite large and so manually creating all of them is tedious. Additionally SimpleITK supports 8, 16, 32-bit images as well as RGB so it is much easier than making them in pydicom.
(0008, 0008) Image Type CS: ['DERIVED', 'SECONDARY']
(0008, 0016) SOP Class UID UI: Secondary Capture Image Storage
(0008, 0018) SOP Instance UID UI: 1.2.826.0.1.3680043.2.1125.1.35596048796922805578234000521866725
(0008, 0020) Study Date DA: '20170803'
(0008, 0021) Series Date DA: '20170803'
(0008, 0023) Content Date DA: 0
(0008, 0030) Study Time TM: '080429.171808'
(0008, 0031) Series Time TM: '080429'
(0008, 0033) Content Time TM: 0
(0008, 0050) Accession Number SH: ''
(0008, 0060) Modality CS: 'OT'
(0008, 0064) Conversion Type CS: 'WSD'
(0008, 0090) Referring Physician's Name PN: ''
(0010, 0010) Patient's Name PN: ''
(0010, 0020) Patient ID LO: ''
(0010, 0030) Patient's Birth Date DA: ''
(0010, 0040) Patient's Sex CS: ''
(0018, 2010) Nominal Scanned Pixel Spacing DS: ['1', '3']
(0020, 000d) Study Instance UID UI: 1.2.826.0.1.3680043.2.1125.1.33389357207068897066210100430826006
(0020, 000e) Series Instance UID UI: 1.2.826.0.1.3680043.2.1125.1.51488923827429438625199681257282809
(0020, 0010) Study ID SH: ''
(0020, 0011) Series Number IS: ''
(0020, 0013) Instance Number IS: ''
(0020, 0020) Patient Orientation CS: ''
(0020, 0052) Frame of Reference UID UI: 1.2.826.0.1.3680043.2.1125.1.35696880630664441938326682384062489
(0028, 0002) Samples per Pixel US: 1
(0028, 0004) Photometric Interpretation CS: 'MONOCHROME2'
(0028, 0010) Rows US: 40
(0028, 0011) Columns US: 50
(0028, 0100) Bits Allocated US: 32
(0028, 0101) Bits Stored US: 32
(0028, 0102) High Bit US: 31
(0028, 0103) Pixel Representation US: 1
(0028, 1052) Rescale Intercept DS: "0"
(0028, 1053) Rescale Slope DS: "1"
(0028, 1054) Rescale Type LO: 'US'
(7fe0, 0010) Pixel Data OW: Array of 8000 bytes
write_dicom
function contains more operations than you show here? Otherwise, you seem to be creating a file with only pixel data, and this would not be a valid DICOM file. You need to enter study, series, instance UID:s, image modality, patient data etc. for the file to become DICOM compliant. – Anders Gustafsson