3
votes

Our group is working with an embedded processor (Phytec LPC3180, ARM9). We have designed a board that includes four MAX3107 uart chips on one of the LPC3180's I2C busses. In case it matters, we are running kernel 2.6.10, the latest version available for this processor (support of this product has not been very good; we've had to develop or fix a number of the drivers provided by Phytec, and Phytec seems to have no interest in upgrading the linux code (especially kernel version) for this product. This is too bad in that the LPC3180 is a nice device, especially in the context of low power embedded products that DO NOT require ethernet and in fact don't want ethernet (owing to the associated power consumption of ethernet controller chips). The handler that is installed now (developed by someone else) is based on a top-half handler and bottom-half work queue approach.

When one of four devices (MAX3107 UART chips) on the I2C bus receives a character it generates an interrupt. The interrupt lines of all four MAX3107 chips are shared (open drain pull-down) and the line is connected to a GPIO pin of the 3180 which is configured for level interrupt. When one of the 3017's generates an interrupt a handler is run which does the following processing (roughly):

spin_lock_irqsave();
disable_irq_nosync(irqno);
irq_enabled = 0;
irq_received = 1;
spin_unlock_irqrestore()
set_queued_work();  // Queue up work for all four devices for every interrupt
                    // because at this point we don't know which of the four
                    // 3107's generated the interrupt
return IRQ_HANDLED;

Note, and this is what I find somewhat troubling, that the interrupt is not re-enabled before leaving the above code. Rather, the driver is written such that the interrupt is re-enabled by a bottom half work queue task (using the "enable_irq(LPC_IRQ_LINE) function call". Since the work queue tasks do not run in interrupt context I believe they may sleep, something that I believe to be a bad idea for an interrupt handler.

The rationale for the above approach follows: 1. If one of the four MAX3107 uart chips receives a character and generates an interrupt (for example), the interrupt handler needs to figure out which of the four I2C devices actually caused the interrupt. However, and apparently, one cannot read the I2C devices from within the context of the upper half interrupt handler since the I2C reads can sleep, something considered inappropriate for an interrupt handler upper-half. 2. The approach taken to address the above problem (i.e. which device caused the interrupt) is to leave the interrupt disabled and exit the top-half handler after which non-interrupt context code can query each of the four devices on the I2C bus to figure out which received the character (and hence generated the interrupt). 3. Once the bottom-half handler figures out which device generated the interrupt, the bottom-half code disables the interrupt on that chip so that it doesn't re-trigger the interrupt line to the LPC3180. After doing so it reads the serial data and exits.

The primary problem here seems to be that there is not a way to query the four MAX3107 uart chips from within the interrupt handler top-half. If the top-half simply re-enabled interrupts before returning, this would cause the same chip to generate the interrupt again, leading, I think, to the situation where the top-half disables the interrupt, schedules bottom-half work queues and disables the interrupt only to find itself back in the same place because before the lower-half code would get to the chip causing the interrupt, another interrupt has occurred, and so forth, ....

Any advice for dealing with this driver will be much appreciated. I really don't like the idea of allowing the interrupt to be disabled in the top-half of the driver yet not be re-enabled prior to existing the top-half drive code. This does not seem safe.

Thanks,

Jim

PS: In my reading I've discovered threaded interrupts as a means to deal with the above-described requirements (at least that's my interpretation of web site articles such as http://lwn.net/Articles/302043/). I'm not sure if the 2.6.10 kernel as provided by Phytec includes threaded interrupt functions. I intend to look into this over the next few days.

2
Jim did you get anywhere with this? I am working on a project that has the same multi uart requirements via I2c under linux.ckglobalroaming
@ckglobalroaming One of the guys in my group did get a workable I2C uart driver working, but it was difficult. Furthermore, we very occasionally experience I2C bus lockups that require a full power cycle to recover from. I would never try and implement multiple uarts under I2C again. Rather, provided such was available, I would use a SPI bus implementation.Jim Luby

2 Answers

1
votes

If your code is written properly it shouldn't matter if a device issues interrupts before handling of prior interrupts is complete, and you are correct that you don't want to do blocking operations in the top half, but blocking operations are acceptable in a bottom half, in fact that is part of the reason they exist!

In this case I would suggest an approach where the top half just schedules the bottom half, and then the bottom half loops over all 4 devices and handles any pending requests. It could be that multiple devices need processing, or none.

Update: It is true that you may overload the system with a load test, and the software may need to be optimized to handle heavy loads. Additionally I don't have a 3180, and four 3107s (or similar) of my own to test this out on, so I am speaking theoretically, but I am not clear why you need to disable interrupts at all.

Generally speaking when a hardware device asserts an interrupt it will not assert another one until the current one is cleared. So you have 4 devices sharing one int line:

  1. Your top half fires and adds something to the work queue (ie triggers bottom half)
  2. Your bottom half scans all devices on that int line (ie all four 3107s)
  3. If one of them caused the interrupt you will then read all data necessary to fully process the data (possibly putting it in a queue for higher level processing?)
  4. You "clear" the interrupt on the current device.

When you clear the interrupt then the device is allowed to trigger another interrupt, but not before.

More details about this particular device:

It seems that this device (MAX3107) has a buffer of 128 words, and by default you are getting interrupted after every single word. But it seems that you should be able to take better advantage of the buffer by setting the FIFO level registers. Then you will get interrupted only after that number of words has been rx (or if you fill your tx FIFO up beyond the threshold in which case you should slow down the transmit speed (ie buffer more in software)).

It seems the idea is to basically pull data off the devices periodically (maybe every 100ms or 10ms or whatever seems to work for you) and then only have the interrupt act as a warning that you have crossed a threshold, which might schedule the periodic function for immediate execution, or increases the rate at which it is called.

1
votes

Interrupts are enabled & disabled because we use level-based interrupts, not edge-based. The ramifications of that are explicitly explained in the driver code header, which you have, Jim.

Level-based interrupts were required to avoid losing an edge interrupt from a character that arrives on one UART immediately after one arriving on another: servicing the first effectively eliminates the second, so that second character would be lost. In fact, this is exactly what happened in the initial, edge-interrupt version of this driver once >1 UART was exercised.

Has there been an observed failure with the current scheme?

Regards, The Driver Author (someone else)