There are potential problems if you write your own recursive implementation or the iterative equivalent with stack. See this example:
dic = {}
dic["key1"] = {}
dic["key1"]["key1.1"] = "value1"
dic["key2"] = {}
dic["key2"]["key2.1"] = "value2"
dic["key2"]["key2.2"] = dic["key1"]
dic["key2"]["key2.3"] = dic
In the normal sense, nested dictionary will be a n-nary tree like data structure. But the definition doesn't exclude the possibility of a cross edge or even a back edge (thus no longer a tree). For instance, here key2.2 holds to the dictionary from key1, key2.3 points to the entire dictionary(back edge/cycle). When there is a back edge(cycle), the stack/recursion will run infinitely.
root<-------back edge
/ \ |
_key1 __key2__ |
/ / \ \ |
|->key1.1 key2.1 key2.2 key2.3
| / | |
| value1 value2 |
| |
cross edge----------|
If you print this dictionary with this implementation from Scharron
def myprint(d):
for k, v in d.items():
if isinstance(v, dict):
myprint(v)
else:
print "{0} : {1}".format(k, v)
You would see this error:
RuntimeError: maximum recursion depth exceeded while calling a Python object
The same goes with the implementation from senderle.
Similarly, you get an infinite loop with this implementation from Fred Foo:
def myprint(d):
stack = list(d.items())
while stack:
k, v = stack.pop()
if isinstance(v, dict):
stack.extend(v.items())
else:
print("%s: %s" % (k, v))
However, Python actually detects cycles in nested dictionary:
print dic
{'key2': {'key2.1': 'value2', 'key2.3': {...},
'key2.2': {'key1.1': 'value1'}}, 'key1': {'key1.1': 'value1'}}
"{...}" is where a cycle is detected.
As requested by Moondra this is a way to avoid cycles (DFS):
def myprint(d):
stack = list(d.items())
visited = set()
while stack:
k, v = stack.pop()
if isinstance(v, dict):
if k not in visited:
stack.extend(v.items())
else:
print("%s: %s" % (k, v))
visited.add(k)
dict
as a variable name. Don't ever do this (this is why it fails). – Niklas B.