I am an statistics student and R beginner (understatement of the year) trying to generate multiple confidence intervals for randomly generated samples of a normal distribution as part of an assignment.
I used the function
data <- replicate(25, rnorm(20, 50, 6))
to generate 25 samples of size n=20 from a N(50, 6^2) distribution (in a double matrix).
My question is, how do I find a 95% confidence interval for each sample of this distribution? I know that I can use colMeans(data) and sd(data) to find the sample mean and sample standard deviation for each sample, but I am having a brain fart trying to think of a function that can generate the confidence intervals for all columns in the double matrix (data).
As of now, my (extremely crude) solution consists of creating the functions
left <- function (x,y){x-(qnorm(0.975)*y/sqrt(20))}
right <- function (x,y){x+(qnorm(0.975)*y/sqrt(20))}
left(colMeans(data), sd(data)
right(colMeans(data), sd(data)
to generate 2 vectors of left and right bounds. Please let me know if there is a better way I can do this.
left
andright
. If you feel I got it wrong, feel free to roll is back. - joran