79
votes

I have seen it asserted several times now that the following code is not allowed by the C++ Standard:

int array[5];
int *array_begin = &array[0];
int *array_end = &array[5];

Is &array[5] legal C++ code in this context?

I would like an answer with a reference to the Standard if possible.

It would also be interesting to know if it meets the C standard. And if it isn't standard C++, why was the decision made to treat it differently from array + 5 or &array[4] + 1?

13
@Brian: Nope, it would only require bounds checking if the runtime was required to catch the error. To avoid that, the standard can simply say "not allowed". It's undefined behavior at its finest. You're not allowed to do it, and the runtime and compiler aren't required to tell you if you do it.jalf
Ok, just to clarify a bit, because the title misled me: A pointer one past the end of an array is not out-of-bounds. Out of bounds pointers are not allowed in general, but the standard is a lot more lenient with one-past-the-end pointers. You might want to edit the title if you're specifically asking about one-past-the-end pointers. If you want to know about out of bounds pointers in general, you should edit your example. ;)jalf
He's not asking about pointers one past in general. He's asking about using the & operator to get the pointer.Matthew Flaschen
@Matthew: But the answer to that depends on where that pointer points to. You're allowed to take the address in the one-past-the-end case, but not in an out-of-bounds case.jalf
Section 5.3.1.1 Unary operator '*': 'the result is an lvalue referring to the object or function'. Section 5.2.1 Subscripting The expression E1[E2] is identical (by definition) to *((E1)+(E2)). By my reading of the standard here. There is no de-refrencing of the resulting pointer. (see full explanation below)Martin York

13 Answers

45
votes

Yes, it's legal. From the C99 draft standard:

§6.5.2.1, paragraph 2:

A postfix expression followed by an expression in square brackets [] is a subscripted designation of an element of an array object. The definition of the subscript operator [] is that E1[E2] is identical to (*((E1)+(E2))). Because of the conversion rules that apply to the binary + operator, if E1 is an array object (equivalently, a pointer to the initial element of an array object) and E2 is an integer, E1[E2] designates the E2-th element of E1 (counting from zero).

§6.5.3.2, paragraph 3 (emphasis mine):

The unary & operator yields the address of its operand. If the operand has type ‘‘type’’, the result has type ‘‘pointer to type’’. If the operand is the result of a unary * operator, neither that operator nor the & operator is evaluated and the result is as if both were omitted, except that the constraints on the operators still apply and the result is not an lvalue. Similarly, if the operand is the result of a [] operator, neither the & operator nor the unary * that is implied by the [] is evaluated and the result is as if the & operator were removed and the [] operator were changed to a + operator. Otherwise, the result is a pointer to the object or function designated by its operand.

§6.5.6, paragraph 8:

When an expression that has integer type is added to or subtracted from a pointer, the result has the type of the pointer operand. If the pointer operand points to an element of an array object, and the array is large enough, the result points to an element offset from the original element such that the difference of the subscripts of the resulting and original array elements equals the integer expression. In other words, if the expression P points to the i-th element of an array object, the expressions (P)+N (equivalently, N+(P)) and (P)-N (where N has the value n) point to, respectively, the i+n-th and i−n-th elements of the array object, provided they exist. Moreover, if the expression P points to the last element of an array object, the expression (P)+1 points one past the last element of the array object, and if the expression Q points one past the last element of an array object, the expression (Q)-1 points to the last element of the array object. If both the pointer operand and the result point to elements of the same array object, or one past the last element of the array object, the evaluation shall not produce an overflow; otherwise, the behavior is undefined. If the result points one past the last element of the array object, it shall not be used as the operand of a unary * operator that is evaluated.

Note that the standard explicitly allows pointers to point one element past the end of the array, provided that they are not dereferenced. By 6.5.2.1 and 6.5.3.2, the expression &array[5] is equivalent to &*(array + 5), which is equivalent to (array+5), which points one past the end of the array. This does not result in a dereference (by 6.5.3.2), so it is legal.

41
votes

Your example is legal, but only because you're not actually using an out of bounds pointer.

Let's deal with out of bounds pointers first (because that's how I originally interpreted your question, before I noticed that the example uses a one-past-the-end pointer instead):

In general, you're not even allowed to create an out-of-bounds pointer. A pointer must point to an element within the array, or one past the end. Nowhere else.

The pointer is not even allowed to exist, which means you're obviously not allowed to dereference it either.

Here's what the standard has to say on the subject:

5.7:5:

When an expression that has integral type is added to or subtracted from a pointer, the result has the type of the pointer operand. If the pointer operand points to an element of an array object, and the array is large enough, the result points to an element offset from the original element such that the difference of the subscripts of the resulting and original array elements equals the integral expression. In other words, if the expression P points to the i-th element of an array object, the expressions (P)+N (equivalently, N+(P)) and (P)-N (where N has the value n) point to, respectively, the i+n-th and i−n-th elements of the array object, provided they exist. Moreover, if the expression P points to the last element of an array object, the expression (P)+1 points one past the last element of the array object, and if the expression Q points one past the last element of an array object, the expression (Q)-1 points to the last element of the array object. If both the pointer operand and the result point to elements of the same array object, or one past the last element of the array object, the evaluation shall not produce an overflow; otherwise, the behavior is undefined.

(emphasis mine)

Of course, this is for operator+. So just to be sure, here's what the standard says about array subscripting:

5.2.1:1:

The expression E1[E2] is identical (by definition) to *((E1)+(E2))

Of course, there's an obvious caveat: Your example doesn't actually show an out-of-bounds pointer. it uses a "one past the end" pointer, which is different. The pointer is allowed to exist (as the above says), but the standard, as far as I can see, says nothing about dereferencing it. The closest I can find is 3.9.2:3:

[Note: for instance, the address one past the end of an array (5.7) would be considered to point to an unrelated object of the array’s element type that might be located at that address. —end note ]

Which seems to me to imply that yes, you can legally dereference it, but the result of reading or writing to the location is unspecified.

Thanks to ilproxyil for correcting the last bit here, answering the last part of your question:

  • array + 5 doesn't actually dereference anything, it simply creates a pointer to one past the end of array.
  • &array[4] + 1 dereferences array+4 (which is perfectly safe), takes the address of that lvalue, and adds one to that address, which results in a one-past-the-end pointer (but that pointer never gets dereferenced.
  • &array[5] dereferences array+5 (which as far as I can see is legal, and results in "an unrelated object of the array’s element type", as the above said), and then takes the address of that element, which also seems legal enough.

So they don't do quite the same thing, although in this case, the end result is the same.

17
votes

It is legal.

According to the gcc documentation for C++, &array[5] is legal. In both C++ and in C you may safely address the element one past the end of an array - you will get a valid pointer. So &array[5] as an expression is legal.

However, it is still undefined behavior to attempt to dereference pointers to unallocated memory, even if the pointer points to a valid address. So attempting to dereference the pointer generated by that expression is still undefined behavior (i.e. illegal) even though the pointer itself is valid.

In practice, I imagine it would usually not cause a crash, though.

Edit: By the way, this is generally how the end() iterator for STL containers is implemented (as a pointer to one-past-the-end), so that's a pretty good testament to the practice being legal.

Edit: Oh, now I see you're not really asking if holding a pointer to that address is legal, but if that exact way of obtaining the pointer is legal. I'll defer to the other answerers on that.

10
votes

I believe that this is legal, and it depends on the 'lvalue to rvalue' conversion taking place. The last line Core issue 232 has the following:

We agreed that the approach in the standard seems okay: p = 0; *p; is not inherently an error. An lvalue-to-rvalue conversion would give it undefined behavior

Although this is slightly different example, what it does show is that the '*' does not result in lvalue to rvalue conversion and so, given that the expression is the immediate operand of '&' which expects an lvalue then the behaviour is defined.

9
votes

I don't believe that it is illegal, but I do believe that the behaviour of &array[5] is undefined.

  • 5.2.1 [expr.sub] E1[E2] is identical (by definition) to *((E1)+(E2))

  • 5.3.1 [expr.unary.op] unary * operator ... the result is an lvalue referring to the object or function to which the expression points.

At this point you have undefined behaviour because the expression ((E1)+(E2)) didn't actually point to an object and the standard does say what the result should be unless it does.

  • 1.3.12 [defns.undefined] Undefined behaviour may also be expected when this International Standard omits the description of any explicit definition of behaviour.

As noted elsewhere, array + 5 and &array[0] + 5 are valid and well defined ways of obtaining a pointer one beyond the end of array.

7
votes

In addition to the above answers, I'll point out operator& can be overridden for classes. So even if it was valid for PODs, it probably isn't a good idea to do for an object you know isn't valid (much like overriding operator&() in the first place).

4
votes

This is legal:

int array[5];
int *array_begin = &array[0];
int *array_end = &array[5];

Section 5.2.1 Subscripting The expression E1[E2] is identical (by definition) to *((E1)+(E2))

So by this we can say that array_end is equivalent too:

int *array_end = &(*((array) + 5)); // or &(*(array + 5))

Section 5.3.1.1 Unary operator '*': The unary * operator performs indirection: the expression to which it is applied shall be a pointer to an object type, or a pointer to a function type and the result is an lvalue referring to the object or function to which the expression points. If the type of the expression is “pointer to T,” the type of the result is “T.” [ Note: a pointer to an incomplete type (other than cv void) can be dereferenced. The lvalue thus obtained can be used in limited ways (to initialize a reference, for example); this lvalue must not be converted to an rvalue, see 4.1. — end note ]

The important part of the above:

'the result is an lvalue referring to the object or function'.

The unary operator '*' is returning a lvalue referring to the int (no de-refeference). The unary operator '&' then gets the address of the lvalue.

As long as there is no de-referencing of an out of bounds pointer then the operation is fully covered by the standard and all behavior is defined. So by my reading the above is completely legal.

The fact that a lot of the STL algorithms depend on the behavior being well defined, is a sort of hint that the standards committee has already though of this and I am sure there is a something that covers this explicitly.

The comment section below presents two arguments:

(please read: but it is long and both of us end up trollish)

Argument 1

this is illegal because of section 5.7 paragraph 5

When an expression that has integral type is added to or subtracted from a pointer, the result has the type of the pointer operand. If the pointer operand points to an element of an array object, and the array is large enough, the result points to an element offset from the original element such that the difference of the subscripts of the resulting and original array elements equals the integral expression. In other words, if the expression P points to the i-th element of an array object, the expressions (P)+N (equivalently, N+(P)) and (P)-N (where N has the value n) point to, respectively, the i + n-th and i − n-th elements of the array object, provided they exist. Moreover, if the expression P points to the last element of an array object, the expression (P)+1 points one past the last element of the array object, and if the expression Q points one past the last element of an array object, the expression (Q)-1 points to the last element of the array object. If both the pointer operand and the result point to elements of the same array object, or one past the last element of the array object, the evaluation shall not produce an overflow; otherwise, the behavior is undefined.

And though the section is relevant; it does not show undefined behavior. All the elements in the array we are talking about are either within the array or one past the end (which is well defined by the above paragraph).

Argument 2:

The second argument presented below is: * is the de-reference operator.
And though this is a common term used to describe the '*' operator; this term is deliberately avoided in the standard as the term 'de-reference' is not well defined in terms of the language and what that means to the underlying hardware.

Though accessing the memory one beyond the end of the array is definitely undefined behavior. I am not convinced the unary * operator accesses the memory (reads/writes to memory) in this context (not in a way the standard defines). In this context (as defined by the standard (see 5.3.1.1)) the unary * operator returns a lvalue referring to the object. In my understanding of the language this is not access to the underlying memory. The result of this expression is then immediately used by the unary & operator operator that returns the address of the object referred to by the lvalue referring to the object.

Many other references to Wikipedia and non canonical sources are presented. All of which I find irrelevant. C++ is defined by the standard.

Conclusion:

I am wiling to concede there are many parts of the standard that I may have not considered and may prove my above arguments wrong. NON are provided below. If you show me a standard reference that shows this is UB. I will

  1. Leave the answer.
  2. Put in all caps this is stupid and I am wrong for all to read.

This is not an argument:

Not everything in the entire world is defined by the C++ standard. Open your mind.

2
votes

Working draft (n2798):

"The result of the unary & operator is a pointer to its operand. The operand shall be an lvalue or a qualified-id. In the first case, if the type of the expression is “T,” the type of the result is “pointer to T.”" (p. 103)

array[5] is not a qualified-id as best I can tell (the list is on p. 87); the closest would seem to be identifier, but while array is an identifier array[5] is not. It is not an lvalue because "An lvalue refers to an object or function. " (p. 76). array[5] is obviously not a function, and is not guaranteed to refer to a valid object (because array + 5 is after the last allocated array element).

Obviously, it may work in certain cases, but it's not valid C++ or safe.

Note: It is legal to add to get one past the array (p. 113):

"if the expression P [a pointer] points to the last element of an array object, the expression (P)+1 points one past the last element of the array object, and if the expression Q points one past the last element of an array object, the expression (Q)-1 points to the last element of the array object. If both the pointer operand and the result point to elements of the same array object, or one past the last element of the array object, the evaluation shall not produce an overflow"

But it is not legal to do so using &.

2
votes

Even if it is legal, why depart from convention? array + 5 is shorter anyway, and in my opinion, more readable.

Edit: If you want it to by symmetric you can write

int* array_begin = array; 
int* array_end = array + 5;
1
votes

It should be undefined behaviour, for the following reasons:

  1. Trying to access out-of-bounds elements results in undefined behaviour. Hence the standard does not forbid an implementation throwing an exception in that case (i.e. an implementation checking bounds before an element is accessed). If & (array[size]) were defined to be begin (array) + size, an implementation throwing an exception in case of out-of-bound access would not conform to the standard anymore.

  2. It's impossible to make this yield end (array) if array is not an array but rather an arbitrary collection type.

0
votes

C++ standard, 5.19, paragraph 4:

An address constant expression is a pointer to an lvalue....The pointer shall be created explicitly, using the unary & operator...or using an expression of array (4.2)...type. The subscripting operator []...can be used in the creation of an address constant expression, but the value of an object shall not be accessed by the use of these operators. If the subscripting operator is used, one of its operands shall be an integral constant expression.

Looks to me like &array[5] is legal C++, being an address constant expression.

-1
votes

If your example is NOT a general case but a specific one, then it is allowed. You can legally, AFAIK, move one past the allocated block of memory. It does not work for a generic case though i.e where you are trying to access elements farther by 1 from the end of an array.

Just searched C-Faq : link text

-2
votes

It is perfectly legal.

The vector<> template class from the stl does exactly this when you call myVec.end(): it gets you a pointer (here as an iterator) which points one element past the end of the array.